
ANNOUNCEMENT

• Checkpoint II presentations will be on 5/21
− 8-10 min presentation + 3 min Q&A

− Presentation MUST cover:

• 1 slide on your research topic

• 1 slides on your research goal(s)

• 1-2 slides on your hypothesis and evaluation design

• 1-2 slides on your preliminary results [very important]

• 1 slide on your next steps until the final presentation
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HOW CAN WE BREAK THE ISOLATION?
 - ROWHAMMER BREAKS INTEGRITY

 - SIDE-CHANNELS BREAK CONFIDENTIALITY
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DIFFERENTIAL POWER ANALYSIS
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CACHE-BASED TIMING SIDE-CHANNEL: FLUSH+RELOAD
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• The X86 cache
− Memory architecture

PRELIMINARIES ON MEMORY ARCHITECTURE
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• The X86 cache
− Memory architecture

− Memory access latency: 
• DRAM >>> L3 cache >> L2 cache > L1 cache > Registers

• Cache access is much faster than DRAM access

PRELIMINARIES ON MEMORY ARCHITECTURE
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• The X86 cache
− Memory architecture

− Memory access latency: 
• DRAM >>> L3 cache >> L2 cache > L1 cache > Registers

• Cache access is much faster than DRAM access

− The cache exploits access localities
• Temporal locality: a program will likely access the same memory address multiple times

• Spatial locality: a program will likely access nearby memory addresses

PRELIMINARIES ON CACHE
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• The X86 cache
− Memory architecture

− Memory access latency: 
• DRAM >>> L3 cache >> L2 cache > L1 cache > Registers

• Cache access is much faster than DRAM access

− The cache exploits access localities
• Temporal locality: a program will likely access the same memory address multiple times

• Spatial locality: a program will likely access nearby memory addresses

• x86 system:

− Divides memory into blocks (= lines in cache)

− Stores lines recently accessed by a program

PRELIMINARIES ON CACHE
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• The X86 cache
− Memory architecture

− Memory access latency: 
• DRAM >>> L3 cache >> L2 cache > L1 cache > Registers

• Cache access is much faster than DRAM access

− The cache exploits access localities
• Temporal locality: a program will likely access the same memory address multiple times

• Spatial locality: a program will likely access nearby memory addresses

• x86 system:

− Divides memory into blocks (= lines in cache)

− Stores lines recently accessed by a program

− The last-layer-cache (LLC: L3) is shared across multiple cores
• Improve the system performance

• Think of a shared library in memory used by multiple programs

PRELIMINARIES ON CACHE – SHARED BETWEEN CORES
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• The X86 cache
− Memory and cache are often in inconsistent states

− In case of this cache conflict, system flushes the cache line
• clflush: one can flush the cache line

• Think about: what happens if one flushes a cache line intentionally

PRELIMINARIES ON CACHE – CONSISTENCY
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• Timing side-channel attack
− Exploit the cache flush to leak information on the victim’s memory access

− Assumptions:
• The victim and the attacker access the shared code (e.g., shared libraries)

• The victim’s process and the attacker’s process can be on the same or in different cores

• The attacker can flush the cache line intentionally

FLUSH+RELOAD TECHNIQUE
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• Timing side-channel attack
− Exploit the cache flush to leak information on the victim’s memory access

− Assumptions:
• The victim and the attacker access the shared code (e.g., shared libraries)

• The victim’s process and the attacker’s process can be on the same or in different cores

• The attacker can flush the cache line intentionally

− Flush+Reload procedure
• Step 1: The attacker first flush the cache line (or lines)

• Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)

• Step 3: They will access the same cache line(s) again

• Step 4: Measure the time it takes to load the data

− Slow access: the data has not been accessed by the victim

− Fast access  : the data is accessed by the victim

• Repeat Step 1-4 forever

FLUSH+RELOAD TECHNIQUE
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• Timing side-channel attack
− Flush+Reload procedure

• Step 1: The attacker first flush the cache line (or lines)

• Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)

• Step 3: They will access the same cache line(s) again

• Step 4: Measure the time it takes to load the data

− Slow access: the data has not been accessed

− Fast access  : the data is accessed by the victim

• Repeat Step 1-4 forever

FLUSH+RELOAD TECHNIQUE
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• RSA operation … why?

FLUSH+RELOAD DEMONSTRATION – RSA
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• RSA operation
− Public key: e N

− Private key: d (that satisfies ed = 1)

− To ciphertext: C = Me mod N

− To plaintext: Cd mod N
• (Me)d mod N

• Med mod N

• M mod N (N is a really large prime, so mostly it’s N)

FLUSH+RELOAD DEMONSTRATION – RSA
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• RSA operation
− Public key: e N

− Private key: d (that satisfies ed = 1)

− To ciphertext: C = Me mod N

− To plaintext: Cd mod N
• (Me)d mod N

• Med mod N

• M mod N (N is a really large prime, so mostly it’s N)

− Implementation of the modular exponentiation 
• Square and multiply algorithm (see the right)

• In here e is equal to d above

• For clear bits: square – reduce

• For set bits    : square – reduce – multiply – reduce

FLUSH+RELOAD DEMONSTRATION – RSA
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• GnuPG (GPG) operation … why?

FLUSH+RELOAD DEMONSTRATION – GNUPG
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• GnuPG (GPG) operation
− GPG uses the RSA algorithm

• Encryption and digital signatures

• 0 bit: square – reduce 

• 1 bit: square – reduce – multiply – reduce

FLUSH+RELOAD DEMONSTRATION – GNUPG
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• GnuPG (GPG) operation
− Run Flush+Reload

• Extract the sequence of operations of the modular exponentiation

• Each Flush+Reload attempt is 2048 cycle – reconnaissance

FLUSH+RELOAD DEMONSTRATION – GNUPG
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• GnuPG (GPG) operation
− Run Flush+Reload

• Extract the sequence of operations of the modular exponentiation

• Each Flush+Reload attempt is 2048 cycle – reconnaissance

• The attack can have false negatives

FLUSH+RELOAD DEMONSTRATION – GNUPG
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• Cross-VM attacks
− The attacker and the victim VMs are on the same host, but on different cores

− The attacker VM can spy the behaviors of the victim
• If the attacker knows what software libraries used by the victim

• It’s easier to do that for commodity software

FLUSH+RELOAD IMPLICATIONS
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• Countermeasures
− Hardware-based non-inclusive cache

− Disable page sharing in the OS

− Obfuscation

− Software-level diversification

FLUSH+RELOAD MITIGATIONS
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Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current
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