ANNOUNCEMENT

* Checkpoint Il presentations will be on 5/21
— 8-10 min presentation + 3 min Q&A
- Presentation MUST cover:
* 1 slide on your research topic
1 slides on your research goal(s)
1-2 slides on your hypothesis and evaluation design

1-2 slides on your preliminary results
1 slide on your next steps until the final presentation
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How CAN WE BREAK THE ISOLATION?
- ROWHAMMER BREAKS
- SIDE-CHANNELS BREAK

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security



DIFFERENTIAL POWER ANALYSIS
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CACHE-BASED TIMING SIDE-CHANNEL: FLUSH+RELOAD
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PRELIMINARIES ON MEMORY ARCHITECTURE

* The X86 cache

- Memory architecture
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PRELIMINARIES ON MEMORY ARCHITECTURE

* The X86 cache

- Memory architecture

- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access
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PRELIMINARIES ON CACHE

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
* Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses
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PRELIMINARIES ON CACHE

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses
* x86 system:

- Divides memory into blocks (= lines in cache)
- Stores lines recently accessed by a program
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PRELIMINARIES ON CACHE — SHARED BETWEEN CORES

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses
* x86 system:
- Divides memory into blocks (= lines in cache)
- Stores lines recently accessed by a program
— The last-layer-cache (LLC: L3) is shared across multiple cores
* Improve the system performance
* Think of a shared library in memory used by multiple programs
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PRELIMINARIES ON CACHE — CONSISTENCY

* The X86 cache
- Memory and cache are often in inconsistent states
- In case of this cache conflict, system flushes the cache line

¢ clflush: one can flush the cache line
* Think about: what happens if one flushes a cache line intentionally
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FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack
- Exploit the cache flush to leak information on the victim’s memory access
- Assumptions:
* The victim and the attacker access the shared code (e.g., shared libraries)

* The victim’s process and the attacker’s process can be on the same or in different cores
* The attacker can flush the cache line intentionally
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FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack

- Exploit the cache flush to leak information on the victim’s memory access
- Assumptions:
* The victim and the attacker access the shared code (e.g., shared libraries)
* The victim’s process and the attacker’s process can be on the same or in different cores
* The attacker can flush the cache line intentionally
— Flush+Reload procedure
» Step 1: The attacker first flush the cache line (or lines)
Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)
Step 3: They will access the same cache line(s) again
Step 4: Measure the time it takes to load the data
- Slow access: the data has not been accessed by the victim
- Fast access : the data is accessed by the victim
Repeat Step 1-4 forever
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FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack
- Flush+Reload procedure
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» Step 1: The attacker first flush the cache line (or lines)

Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)

Step 3: They will access the same cache line(s) again
Step 4: Measure the time it takes to load the data

- Slow access: the data has not been accessed

- Fast access : the data is accessed by the victim
Repeat Step 1-4 forever
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FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation ... why?
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FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation
— Public key: e N
- Private key: d (that satisfies ed = 1)
- To ciphertext: C= M®*mod N
- To plaintext: C* mod N
* (M) mod N
* M modN
* M mod N (N is areally large prime, so mostly it’s N)
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FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation
— Public key: e N
- Private key: d (that satisfies ed = 1)
- To ciphertext: C= M®*mod N
- To plaintext: C* mod N
* (M) mod N
* M modN
* M mod N (N is areally large prime, so mostly it’s N)

- Implementation of the modular exponentiation
* Square and multiply algorithm (see the right)
* In here e is equal to d above
* For clear bits: square — reduce
* For set bits :square —reduce — multiply —reduce
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Square and multiply algorithm
x «—1
for i <|e|-1 downto 0 do
x «—x?mod n
if (e; =1) then
x =xb mod n
endif
done
return x
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FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation ... why?
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FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- GPG uses the RSA algorithm
* Encryption and digital signatures
e 0 bit: square —reduce
* 1 bit: square —reduce — multiply — reduce
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FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- Run Flush+Reload
* Extract the sequence of operations of the modular exponentiation
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e Each Flush+Reload attempt is 2048 cycle — reconnaissance
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FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- Run Flush+Reload

* Extract the sequence of operations of the modular exponentiation
e Each Flush+Reload attempt is 2048 cycle — reconnaissance

* The attack can have false negatives

iR
) Oregon State
%@ University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

30%

25%

20%

15%

10%

5%

0%

10 20
Lost Bits

30

T
i5-CentOS mmmmm
i5-VMware
Xeon-CentOS mmmm
Xeon-KVM

40

T

50

21




FLUSH+RELOAD IMPLICATIONS

* Cross-VM attacks
— The attacker and the victim VMs are on the same host, but on different cores

- The attacker VM can spy the behaviors of the victim

* |If the attacker knows what software libraries used by the victim

* It’s easier to do that for commodity software
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FLUSH+RELOAD MITIGATIONS

* Countermeasures
- Hardware-based non-inclusive cache
- Disable page sharing in the OS
— Obfuscation
- Software-level diversification
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current
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