ANNOUNCEMENT

* Checkpoint Il presentations will be on 5/21
— 8-10 min presentation + 3 min Q&A
- Presentation MUST cover:
* 1 slide on your research topic
1 slides on your research goal(s)
1-2 slides on your hypothesis and evaluation design

1-2 slides on your preliminary results
1 slide on your next steps until the final presentation

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CS 578: CYBER-SECURITY
PART Ill: SIDE-CHANNELS

Sanghyun Hong

sanghyun.hong@ oregonstate.edu

D
OregonState SAIL
&E University Secure Al Systems Lab

How CAN WE BREAK THE ISOLATION?
- ROWHAMMER BREAKS
- SIDE-CHANNELS BREAK

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

DIFFERENTIAL POWER ANALYSIS

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

CACHE-BASED TIMING SIDE-CHANNEL: FLUSH+RELOAD

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON MEMORY ARCHITECTURE

* The X86 cache

- Memory architecture

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON MEMORY ARCHITECTURE

* The X86 cache

- Memory architecture

- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON CACHE

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
* Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON CACHE

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses
* x86 system:

- Divides memory into blocks (= lines in cache)
- Stores lines recently accessed by a program

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON CACHE — SHARED BETWEEN CORES

* The X86 cache

- Memory architecture
- Memory access latency:
* DRAM >>> L3 cache >> L2 cache > L1 cache > Registers
e Cache access is much faster than DRAM access
— The cache exploits access localities
* Temporal locality: a program will likely access the same memory address multiple times
 Spatial locality: a program will likely access nearby memory addresses
* x86 system:
- Divides memory into blocks (= lines in cache)
- Stores lines recently accessed by a program
— The last-layer-cache (LLC: L3) is shared across multiple cores
* Improve the system performance
* Think of a shared library in memory used by multiple programs

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

10

PRELIMINARIES ON CACHE — CONSISTENCY

* The X86 cache
- Memory and cache are often in inconsistent states
- In case of this cache conflict, system flushes the cache line

¢ clflush: one can flush the cache line
* Think about: what happens if one flushes a cache line intentionally

Core 2

| S—

Core 0 { Core 1 J

.J

Core 3

e,
| —

L1 Data
2 KB

L1 Data L1Data
32KB 32 KB

i y

-
b

-
p-

L1 Data
J2KB

~

L3 Unified - 6MB

-

" v \l

¢ regon State
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

11

FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack
- Exploit the cache flush to leak information on the victim’s memory access
- Assumptions:
* The victim and the attacker access the shared code (e.g., shared libraries)

* The victim’s process and the attacker’s process can be on the same or in different cores
* The attacker can flush the cache line intentionally

100%

From Memory

90% - From L1 Cache

80%
70%
60%
50% +
40%
30%
20%

10%

0%

T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100
Probe Time (cycles)

1200

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

12

FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack

- Exploit the cache flush to leak information on the victim’s memory access
- Assumptions:
* The victim and the attacker access the shared code (e.g., shared libraries)
* The victim’s process and the attacker’s process can be on the same or in different cores
* The attacker can flush the cache line intentionally
— Flush+Reload procedure
» Step 1: The attacker first flush the cache line (or lines)
Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)
Step 3: They will access the same cache line(s) again
Step 4: Measure the time it takes to load the data
- Slow access: the data has not been accessed by the victim
- Fast access : the data is accessed by the victim
Repeat Step 1-4 forever

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

13

FLUSH+RELOAD TECHNIQUE

* Timing side-channel attack
- Flush+Reload procedure

%“@

Oregon State
University

» Step 1: The attacker first flush the cache line (or lines)

Step 2: They will wait for a few cycles (e.g., 2000 CPU cycles)

Step 3: They will access the same cache line(s) again
Step 4: Measure the time it takes to load the data

- Slow access: the data has not been accessed

- Fast access : the data is accessed by the victim
Repeat Step 1-4 forever

(A)

(B)

©

(D)

E)

Victim

Attacker

Victim

Attacker

Victim

Attacker

Victim

Attacker

M Flush [Wait [l Reload

§

R | [B—— ¢
I b
o | . 4
2 \ |
p | [4
[2
R | .
|| | I
pan | |
Attacker Viet
W A [[] Something else

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

14

FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation ... why?

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

15

FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation
— Public key: e N
- Private key: d (that satisfies ed = 1)
- To ciphertext: C= M®*mod N
- To plaintext: C* mod N
* (M) mod N
* M modN
* M mod N (N is areally large prime, so mostly it’s N)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 16

FLUSH+RELOAD DEMONSTRATION — RSA

* RSA operation
— Public key: e N
- Private key: d (that satisfies ed = 1)
- To ciphertext: C= M®*mod N
- To plaintext: C* mod N
* (M) mod N
* M modN
* M mod N (N is areally large prime, so mostly it’s N)

- Implementation of the modular exponentiation
* Square and multiply algorithm (see the right)
* In here e is equal to d above
* For clear bits: square — reduce
* For set bits :square —reduce — multiply —reduce

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

Square and multiply algorithm
x «—1
for i <|e|-1 downto 0 do
x «—x?mod n
if (e; =1) then
x =xb mod n
endif
done
return x

17

FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation ... why?

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

18

FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- GPG uses the RSA algorithm
* Encryption and digital signatures
e 0 bit: square —reduce
* 1 bit: square —reduce — multiply — reduce

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

19

FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- Run Flush+Reload
* Extract the sequence of operations of the modular exponentiation

%‘3

Oregon State
University

e Each Flush+Reload attempt is 2048 cycle — reconnaissance

500
ﬁ 400
O
%)
— 300 |
)
E
= 200
)
S
x 100

ol

______ Threshold

Sthuare °
Multiply 4
Modulo -

AAtAgﬁgtAAAQCOAAA 09 000400prs04r00) ‘Ax‘!. 09000 .,44

...ooA....'".0'.'0A‘AA'OO'....'°OO...OO°.AA‘°OOOT

Sr

S

r S

r M

r

S

r

S

r

M r

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

20

FLUSH+RELOAD DEMONSTRATION — GNUPG

* GnuPG (GPG) operation

- Run Flush+Reload

* Extract the sequence of operations of the modular exponentiation
e Each Flush+Reload attempt is 2048 cycle — reconnaissance

* The attack can have false negatives

iR
) Oregon State
%@ University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

30%

25%

20%

15%

10%

5%

0%

10 20
Lost Bits

30

T
i5-CentOS mmmmm
i5-VMware
Xeon-CentOS mmmm
Xeon-KVM

40

T

50

21

FLUSH+RELOAD IMPLICATIONS

* Cross-VM attacks
— The attacker and the victim VMs are on the same host, but on different cores

- The attacker VM can spy the behaviors of the victim

* |If the attacker knows what software libraries used by the victim

* It’s easier to do that for commodity software

iR
) Oregon State
%@ University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

e

Core 0

B

p
{ Core 1

{ Core 2

{ Core 3

S
L1 Data
J2KB
-

L1 Data L1Data L1 Data
32KB 32 KB 2 KB
-
_J - -~
vy e b v
>~

i

L3 Unified - 6MB

S

22

FLUSH+RELOAD MITIGATIONS

* Countermeasures
- Hardware-based non-inclusive cache
- Disable page sharing in the OS
— Obfuscation
- Software-level diversification

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

23

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

Tp
OregonState SAIL
& UanEI‘Slty Secure Al Systems Lab

https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: Announcement
	Slide 2: CS 578: Cyber-security Part III: Side-channels
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Preliminaries on memory architecture
	Slide 7: Preliminaries on memory architecture
	Slide 8: Preliminaries on cache
	Slide 9: Preliminaries on cache
	Slide 10: Preliminaries on cache – shared between cores
	Slide 11: Preliminaries on cache – consistency
	Slide 12: Flush+Reload technique
	Slide 13: Flush+Reload technique
	Slide 14: Flush+Reload technique
	Slide 15: Flush+Reload demonstration – rsa
	Slide 16: Flush+Reload demonstration – rsa
	Slide 17: Flush+Reload demonstration – rsa
	Slide 18: Flush+Reload demonstration – gnupg
	Slide 19: Flush+Reload demonstration – gnupg
	Slide 20: Flush+Reload demonstration – gnupg
	Slide 21: Flush+Reload demonstration – gnupg
	Slide 22: Flush+Reload implications
	Slide 23: Flush+Reload mitigations
	Slide 34

