
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART V: WEB SECURITY

Sanghyun Hong
sanghyun.hong@oregonstate.edu

WHAT ARE THE ATTACKS IN THE WEB?

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 2

DICTIONARY ATTACK

• The security guarantee assumes
− We choose the password randomly!

• In reality
− (12345678) Easy to memorize and type

− (OregonBeaverRocks) Some phrases familiar

− (Oregon1234) Add numbers on the phrase

− (password1234!!) Add special characters at the end

− …

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 3

DICTIONARY ATTACK

• Search space is significantly reduced
− Suppose that the password is

• 13 characters and consists of [A-Za-z0-9]

• = 6213 possible combinations (2.002854e23)

− Suppose that
• We know the password starts from ‘Portland’

• = 625 possible combinations (9.1613283e8)

• = 1015 smaller

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 4

SQL INJECTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 5

SQL INJECTION

• Exploit the system’s weakness
− SELECT (username, password) FROM users WHERE username = ‘neuronoverflow’

and password = SHA256(secret + “my-super-secure-password!@#$11”)

• SQL injection
− We supply ‘or ‘a’=‘a as a password

− SELECT (username, password) FROM
users WHERE
username = ‘neuronoverflow’
and password = ‘’ or ‘a’ =‘a’

− THIS IS ALWAYS TRUE!!!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 6

SQL INJECTION

• What if we supply ‘ union select (‘admin’, ‘a’) where ‘a’=‘a as a password?
− SELECT (username, password) FROM users WHERE

− username = ‘neuronoverflow’ and password = ‘’
union select (‘admin’, ‘a’) where ‘a’=‘a’

• You will have the admin
− None for the first select statement

− and the 2nd statement will query

• Username = ‘admin’

• Password = ‘a’

• Always return true ‘a’ = ‘a’

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 7

SAME ORIGIN POLICY

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 8

SECURITY RISKS ON THE INTERNET

• Risk I:
− Malicious websites should not be able to

tamper with our information or interact-
ions on other websites

− Example:

• We visit “latimes.com”

• Malicious folks do “ad” on this site

• The “ad” runs some JavaScripts and
extracts our information from “latimes”
(e.g., which type of articles we read)

I want to know what you read!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 9

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser

• Prevents a malicious website from running scripts on other websites

• Pages from the same site don’t need to be isolated to each other

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 10

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser

• Prevents a malicious website from running scripts on other websites

• Pages from the same site don’t need to be isolated to each other

Browser: No, you can’t do this request

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 11

RECAP: URLS

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser

• Prevents a malicious website from running scripts on other websites

• Pages from the same site don’t need to be isolated to each other

− Every webpage has an origin defined by its URL with three parts:

• Protocol: The protocol in the URL

• Domain: The domain in the URL’s location

• Port: The port in the URL’s location
(If not specified, the default is 80 for HTTP and 443 for HTTPS)

• Example:

− https://computer.science.org/assets/photo.png (default: 443)

− http://science.org:80/assets/new_photo.png

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 12

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

Domain I Domain II Same-origin?

https://cs.org http://www.cs.org No, domain mismatch

http://cs.org https://cs.org No, protocol mismatch

http://cs.org:80 http://cs.org:8080 No, protocol mismatch

https://cs.org/photo.png https://cs.org/data/my.htm Yes

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 13

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

Domain I Domain II Same-origin?

https://cs.org http://www.cs.org No, domain mismatch

http://cs.org https://cs.org No, protocol mismatch

http://cs.org:80 http://cs.org:8080 No, protocol mismatch

https://cs.org/photo.png https://cs.org/data/my.htm Yes

Reminder: Same-origin policy works with HTTPs!
Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 14

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

− Example scenario:

• cs.org embeds google.com

• The inner frame cannot interact with the outer frame

• The outer frame cannot interact with the inner one

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 15

SAME-ORIGIN POLICY EXCEPTIONS

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

− Example scenario:

• cs.org embeds google.com

• The inner frame cannot interact with the outer frame

• The outer frame cannot interact with the inner one

− Exception I:
• JavaScript runs with the origin of the page that loads it

• ex. cs.org fetches JavaScript from google.com:

− The JavaScript has the origin of cs.org

− cs.org has “copy-pasted” JavaScript onto its webpage

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 16

SAME-ORIGIN POLICY EXCEPTIONS

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

− Example scenario:

• cs.org embeds google.com

• The inner frame cannot interact with the outer frame

• The outer frame cannot interact with the inner one

− Exception II:
• Websites can fetch and display images/frames from other origins

• The website only knows about the image’s size and dimensions (restricted info.)

• The image and the frame has the origin of the page that it comes from (restricted)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 17

SAME-ORIGIN POLICY EXCEPTION (AND A WEAKNESS)

• Same-origin policy
− Two websites have the same origin if and only if

− The protocol, domain, and port of the URL all match exactly

− Example scenario:

• cs.org embeds google.com

• The inner frame cannot interact with the outer frame

• The outer frame cannot interact with the inner one

− Exception III:
• Websites can agree to allow some limited sharing

• Cross-origin resource sharing (CORS)

• ex. the postMessage function in JavaScript

− Receiving origin decides if to accept the message based on the origin

− The correctness is enforced by the browser

postMessage(“run”, script)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 18

CROSS-SITE SCRIPTING (XSS)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 19

SECURITY RISKS ON THE INTERNET

• Risk II

1https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 20

REVISIT: JAVASCRIPT

• JavaScript
− A programming language for running code in the web browser

− Runs on the client-side

• The server sends code as part of the HTTP response

• The code runs in the browser, not in the web-server

− Used to manipulate web pages (HTML and CSS)

• Makes modern websites interactive

• JavaScript can be directly embedded in HTML with <script> tags

− Supported by all modern web browsers

• Most modern webpages involve JavaScript

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 21

REVISIT: JAVASCRIPT – CONT’D

• JavaScript example
− Create a pop-up message

− HTML: <script>alert(”Hello world!")</script>

Hello world!

Ok

If the browser loads the HTML,
it will run the embedded JavaScript
and create a pop-up window.

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 22

REVISIT: JAVASCRIPT – CONT’D

• JavaScript in Go
− Websites runs JavaScript with an (potentially malicious) input

− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to render the website with the given name

− You will receive the following response (and the browser renders it)

func handleSayHello(w http.ResponseWriter, r *http.Request) {

 name := r.URL.Query()["name"][0]

 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=Bob

<html><body>Hello Bob!</body></html>

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 23

REVISIT: JAVASCRIPT – CONT’D

• JavaScript in Go
− Websites runs JavaScript with an (potentially malicious) input

− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to include HTML tags

− You will receive the following response (and the browser renders it)

func handleSayHello(w http.ResponseWriter, r *http.Request) {

 name := r.URL.Query()["name"][0]

 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=Bob

<html><body>Hello Bob!</body></html>

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 24

REVISIT: JAVASCRIPT – CONT’D

• JavaScript exploitation
− Websites runs JavaScript with an (potentially malicious) input

− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to include HTML tags

− You will receive the following response (and the browser renders it)

func handleSayHello(w http.ResponseWriter, r *http.Request) {

 name := r.URL.Query()["name"][0]

 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

1

Ok

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 25

XSS: CROSS-SITE SCRIPTING

• Cross-site scripting
− An adversary injects malicious JavaScript to a legitimate website

• The victim accesses the legitimate website

• The legitimate website sends the attacker’s JavaScript to the victim

• The victim’s browser will run the script with the origin of the legitimate website

• Now the attacker’s JavaScript can access information on the legitimate website

− It evades the same-origin policy

• The JavaScript will run with the same origin (as the legitimate website)

− Two representative XSS attacks

• Stored XSS

• Reflected XSS

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 26

XSS: CROSS-SITE SCRIPTING

• Stored XSS (Persist XSS)

− The attacker’s JavaScript is stored on the legitimate server

− Example: Facebook pages

• Anyone can load a Facebook page with content provided by users

• An adversary puts some JavaScript on their Facebook page

• Anyone who loads the attacker’s page will run JavaScript (with the origin of Facebook)

− Note: stored XSS requires the victim to load the page with injected JavaScript

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 27

XSS: CROSS-SITE SCRIPTING

• Stored XSS illustration
− The attacker’s JavaScript is stored on the legitimate server

− Note: stored XSS requires the victim to load the page with injected JavaScript

2. Request website contents

3. Receive contents with malicious scripts

4. The victim runs this script

5. Send malicious requests and receives resp.

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 28

XSS: CROSS-SITE SCRIPTING

• Reflected XSS
− The attacker has the victim input JavaScript into a request

− The content is reflected (copied) in the response from the server

− Example: Search

• The victim makes a request to http://google.com/search?q=Bob

• The response will be “XYZ results for Bob”

• The victim makes a request to http://google.com/search?q=<script>alert(1)</script>

• The response will be “XYZ results for <script>alert(1)</script>”

− Note: reflected XSS requires the victim to make a request with injected JavaScript

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 29

http://google.com/search?q=Bob
http://google.com/search?q=%3cscript%3ealert(1)%3c/script%3e

XSS: CROSS-SITE SCRIPTING

• Reflected XSS illustration
− The attacker has the victim input JavaScript into a request

− The content is reflected (copied) in the response from the server

1. Make the victim do malicious requests
(e.g., click the link in a spam)

2. Request URLs under the attack’s control

3. Reflect malicious scripts

4. The victim runs the malicious script

5. Send malicious requests and receives resp.

6. Receives sensitive data
(e.g., session token)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 30

XSS: CROSS-SITE SCRIPTING

• Reflected XSS (Practicality)
− How do we make the victim to make such malicious requests?

• Make a malicious website that includes an embedded iframe which makes the request

− Make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
− <iframe height=1 width=1 src="http://google.com/search?q=<script>alert(1)</script>">

• Trick the victim into clicking the link

− Posting a link on social media

− Sending a text (Here is a new photo from your friend XYZ…)

− Sending a phishing email

• The link will load the attacker’s website and redirects to the reflected XSS link

• … (Good luck then) …

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 31

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML sanitization

− HTML escaping

− Content security policy (CSP)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 32

COOKIES

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 33

MOTIVATION

• HTTP is state-“less”
− Illustrating example

• Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”

• Today, Bob visited “facebook.com” and found that the language is “English”

• Bob sets it to “Sanskrit”

• … (do this unlimited times)

5.15.2023 Set my language to “Sanskrit”

5.16.2023 Set my language to “Sanskrit”

5.17.2023 Set my language to “Sanskrit”

… (5.17.2100 Set my language …)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 34

MOTIVATION

• Solution: Cookies
− Illustrating example

• Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”

• The server sends HTTP response with small blocks of data containing the language pref.

• The browser stores the data to its cookie jar

• Today, Bob visited “facebook.com” and see the “Sanskrit” version

5.15.2023 Set my language to “Sanskrit”

5.15.2023 HTTP response with cookies

5.16.2023 HTTP request

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 35

COOKIES

• Cookies
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)

• HTTP Header:

− Set-cookie: name = value;

− (It’s a name-value pair with some extra metadata)

− Example:

≫HTTP/1.1 200 OK

≫Content-Type: text/html

≫Set-Cookie: items=16

≫Set-Cookie: headercolor=blue

≫Set-Cookie: footercolor=green

≫Set-Cookie: screenmode=dark, Expires=Sun, 1 Jan 2023 12:00:00 GMT

• Let’s take a look (Chrome: view > developer > developer tools > application > Cookies)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 36

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)

• HTTP Header:

− Set-cookie: name = value;

− Domain = (when to send);

− Path = (when to send);

• The server automatically attaches the cookies in scope

Scope

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 37

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)

• HTTP Header:

− Set-cookie: name = value;

− Domain = (when to send);

− Path = (when to send);

− Secure = (only send over HTTPS);

• The server automatically attaches the cookies in scope

• The cookies can only be sent via secure communication (using TLS)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 38

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)

• HTTP Header:

− Set-cookie: name = value;

− Domain = (when to send);

− Path = (when to send);

− Secure = (only send over HTTPS);

− Expires = (when expires)

− HttpOnly

• The server automatically attaches the cookies in scope

• The cookies can only be sent via secure communication (using TLS)

• The browser should delete the cookies after a certain expiration date

• HttpOnly: cookies cannot be accessed by JavaScript; only for HTTP requests

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 39

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies

− The browser sends the cookies based on the scope

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 40

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies

• Domain can be any domain-suffix of URL-hostname (not a TLD)

• Example:

− The server “login.cs370.com” sends cookies; can it

− set cookies in the browser for “cs370.com”?

− set cookies in the browser for “.cs370.com”?

− set cookies in the browser for “secret.cs370.com”?

− set cookies in the browser for “.com”?

− set cookies in the browser for “osu-cs370.com”?

• Path can be set to any path

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 41

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies

− The browser sends the cookies based on the scope

• Suppose the cookie we have is

− domain: “cs370.com”

− path : “/micro-labs”

• The browser can include the cookies in the request to:

− http://login.cs370.com/micro-labs/week1/sanity-check

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 42

COOKIES

• Example:
− Cookie 1:

• name = neuronoverflow

• value = ctf-admin

• domain = login.cs370.com

• path = /

• non-secure

− Which cookies will be sent?

• “http://checkout.cs370.com”

• “http://login.cs370.com”

• “http://osu-cs370.com”

• “https://login.cs370.com”

− Cookie 2:

• name = test

• value = ctf-player

• domain =.cs370.com

• path = /

• non-secure

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 43

COOKIES

• Cookies vs. same-origin policy
− SOP requires an exact match between domains

− Cookies do not always require an exact match; scope matters

− Example:

• Suppose we have a cookie:

− name = neuronoverflow

− value = ctf-admin

− domain = login.cs370.com

− path = /

− non-secure

• “http://users.cs370.com”
− JavaScript on this URL can access the cookie above…

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 44

COOKIES

• Bypass same-origin policy
− SOP requires an exact match between domains

m1234.facebook.com

login.facebook.com

1. The “facebook.com” sends cookies (e.g., session token)

login.facebook.com

2.

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 45

SESSION AUTHENTICATION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 46

MOTIVATION

• Session authentication
− Motivating example

• Bob visited “oregonstate.com” and login with their username, password

• Bob, 5-min later, visit “oregonstate.edu”

• The website asks their usernamd and password

• Bob is very happy…

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 47

MOTIVATION

• Session authentication
− Motivating example

• Bob visited “oregonstate.com” and login with their username, password

• Bob, 5-min later, visit “oregonstate.edu”

• The website asks their usernamd and password

• Bob is very happy…

− Session token

• A secret value for associating requests with a legitimate user

• In the first visit to the website:

− Type the username and password

− The browser receives a session token (the server remembers this token)

• The subsequent visits to the website

− Include the session token in the requests

− The server checks if the token is valid and is not expired

− Then the server processes the request

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 48

SESSION TOKEN

• Session authentication
− Session token + cookies

• A secret value for associating requests with a legitimate user

• In the first visit to the website:

− Type the username and password

− The server sends cookies with a session token

− The browser receives a session token (the server remembers this token)

• The subsequent visits to the website

− Include the session token cookie in the requests

− The server checks if the token is valid and is not expired

− Then the server processes the request

• If one logs-out

− The browser and server delete the session token

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 49

SESSION TOKEN

• + cookies
− Security

• Suppose that the session token is stolen:

− The attacker can impersonate you in any request

− … You are friendly-up!

• To ensure the security

− The server needs to generate session tokens randomly and securely

− The browser requires to

≫Check if malicious website cannot steal tokens (GSB)

≫Make sure they do not send session tokens to malicious websites

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 50

https://safebrowsing.google.com/

CROSS-SITE REQUEST FORGERY (CSRF)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 51

SECURITY RISKS ON THE INTERNET

• Risk III

1https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 52

CSRF: CROSS-SITE REQUEST FORGERY

• CSRF (one-click attack or session riding)

− Make legitimate users to send malicious requests to the server

• The attacker impersonates a legitimate user

• The user’s browser will automatically attach (malicious) cookies
(It exploits the cookie-based authentication mechanism)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 53

CSRF: CROSS-SITE REQUEST FORGERY

• CSRF (one-click attack or session riding)

− Attack Illustration

• A user authenticates to the server

• The attacker tricks the user into making a malicious request

• The server accepts the malicious request from the legitimate user

• The server is the target!

1. Log-in

3. Make malicious requests

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 54

CSRF: CROSS-SITE REQUEST FORGERY

• CSRF (one-click attack or session riding)

− How can an adversary trick the user?

• GET request:

− Make the user into clicking a link (SMS, Spam, …)
− https://bank.com/transfer?amount=10000&to=Mallony

− Put some html on a website the victim will visit (1x1 pixel image with a request)
−

3. Make malicious requests

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 55

CSRF: CROSS-SITE REQUEST FORGERY

• CSRF (one-click attack or session riding)

− How can an adversary trick the user?

• Post request:

− Make the user into clicking a link (run JavaScript on the website a user opens)

− ex. The link opens an attacker’s website, and it runs some JavaScript code

− Put some JavaScript on a website the user will visit

− ex. The attacker pays for an ad. and put JavaScript code there

3. Make malicious requests

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 56

CSRF: CROSS-SITE REQUEST FORGERY

• CSRF != Reflected XSS
− Reflected XSS: Make the user (victim) run malicious scripts

− CSRF : Make the server run malicious scripts

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 57

CSRF: CROSS-SITE REQUEST FORGERY

• Real-world examples (Facebook, YouTube)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 58

https://lokeshdlk77.medium.com/facebook-sms-captcha-was-vulnerable-to-csrf-attack-8db537b1e980
https://www.cnet.com/news/privacy/researchers-find-security-holes-in-nyt-youtube-ing-metafilter-sites/

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

− Referer validation

− Same-site cookie attribute

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 59

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

• A secret value that the server provides to the user

• The user must include the same value in the request for the server

− Note

• The token should not be sent to the server in a cookie

• The token must be sent somewhere else and stored to a separate storage

• The token shouldn’t be like a session token (it should expire after 1-2 requests)

− Example:

• HTML forms: vulnerable to CSRF (the attacker can do a POST request with their forms)

• If a user requests from a form, the server attaches a CSRF token as a hidden form field

• The attacker’s JavaScript won’t be able to create a valid form

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 60

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

• A secret value that the server provides to the user

• The user must include the same value in the request for the server

1. Log-in

4. Make malicious requests (fail!)

2. Get the token

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 61

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

− Referer header

• A header in an HTTP request that shows which webpage made the request

• In CSRF, the user makes malicious requests from a different website

− “Referer” is a 30-year typo in the HTTP standard…

− If we make a request from “facebook.com” then the header is “https://www.facebook.com”

− If an “img” tag on a forum makes your browser to make a request
then the Referer header will be “the forum’s URL”

− If JavaScript on an attacker’s website makes your browswer to make a request
then the header will be “the attacker’s website URL”

• The server checks the Referer header

− Reject if it’s not from the same-site

− Accept if it’s from the the same-site

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 62

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

− Referer header

• A header in an HTTP request that shows which webpage made the request

• Potential issues:

− The server can “observe” the user’s private info. from the header
(ex. “facebook.com/<your-friend-name>/posting_1234”)

− Oftentimes, network firewalls (or your browswers) remove this header…

− The header is optional; some requests can come without the header (what should we do…)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 63

CSRF: CROSS-SITE REQUEST FORGERY

• Defenses
− CSRF tokens

− Referer header

− Same-site cookies

• Set a flag on a cookie unexploitable by CSRF attacks

• The browser will send requests when the domain of the cookie = that of the origin

− SameSite = none

− SameSite = strict: check if the domain matches

• Potential issue: not all browsers implements this attribute

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 64

UI ATTACKS

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 65

OVERVIEW

• UI attacks
− What is it?

• The attacker tricks the victim into thinking

• They are taking an intended action when they are actually taking a malicious action

− What to exploit?

• User interfaces: the trusted path between the user and the computer

• Your browser blocks the website to interact across different origins (SOP)

• But trusts the user to do whatever they want

− Two representative attacks

• Clickjacking: Trick the victim into clicking on something from the attacker

• Phishing: Trick the victim into sending the attacker personal information

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 66

CLICKJACKING

• Clickjacking
− What is it?

• Trick the victim into clicking on something from the attacker

− What to exploit?

• User interfaces: the trusted path between the user and the computer

• Your browser trusts “your clicks”

• If you click something, the browser believes you intend to click that

− What can the attacker do?

• Download a malicious program

• Like a YouTube video(s), Instagram pages, or Amazon products

• Steal keystrokes (once sth is downloaded)

− Good luck to your credit card numbers, passwords, or any personal info.

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 67

CLICKJACKING EXAMPLE

• Download buttons
− What is the right button?

− What happens if I click
the wrong button(s)?

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 68

CLICKJACKING EXAMPLE

• “iframe” can be vulnerable

Note: any links on the
website in the iframe
are “washington.edu”

Users can click it, but
we cannot make the
website automatically
click this link due to
the same origin policy

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 69

CLICKJACKING EXAMPLE

• “iframe” can be vulnerable – let’s change the code a bit

There’s a text behind
the iframe loaded the
“washington.edu”

Put style: opacity to
control the “opacity”

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 70

• “iframe” can be vulnerable – let’s add some opacity

CLICKJACKING EXAMPLE

There’s a text behind
the iframe loaded the
“washington.edu”

Put style: opacity to
control the “opacity”

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 71

• “iframe” can be vulnerable – some more (or do extremely)

CLICKJACKING EXAMPLE

But you can still click
something on this
website … ?!

Now the website is
completely opaque

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 72

CLICKJACKING EXAMPLE

• Invisible “iframe”s
− The attacker puts an iframe onto the attacker’s

site invisibly, over visible, enticing content

− Users (victims) think they click
on the attacker’s website

− But the click is actually happened
on the legitimate website

− ex. You click sth, but it’s the Facebook like btn

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 73

CLICKJACKING EXAMPLE

• Invisible “iframe”s – cont’d
− The attacker puts an iframe onto the legitimate

site invisibly, under invisible, malicious content

− Users (victims) think they click
on the legitimate website

− But the click is actually happened
on the attacker’s website

− ex. You click sth, and it downloads malware

Download malware.exe

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 74

CLICKJACKING EXAMPLE

• Invisible “iframe”s – cont’d

− The attacker frames the legitimate site, with the visible malicious contents

− ex. You click the checkout, and I wish you the best!

$0.99

$0.99

$0.00

$0.99

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 75

CLICKJACKING EXAMPLE

• Temporal attack
− Process

• The attacker uses JavaScript

• that detects the position of your cursor

• and change the website right before you click on sth.

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 76

CLICKJACKING EXAMPLE

• Temporal attack
− Example:

Instructions:

Please double-click on the button below to continue to your

content

Click here

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 77

CLICKJACKING EXAMPLE

• Cursorjacking
− CSS can style the appearance of your cursor

− JavaScript can track a cursor’s position

− We can create a fake cursor to trick users into clicking on sth.

Instructions:

Please double-click on the button below to continue to your

content

Click here
Fake cursor: created by
JavaScript or with CSS

Real cursor: created by
JavaScript or with CSS

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 78

CLICKJACKING EXAMPLE

• Cursorjacking
− CSS can style the appearance of your cursor

− JavaScript can track a cursor’s position

− We can create a fake cursor to trick users into clicking on sth.

Do you believe your cursor?

Download .exePLAY NOW!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 79

CLICKJACKING DEFENSES

• Enforce visual integrity
− Clear visual separation between important alerts and content

− Examples:

• Windows “User Account Control” darkens the entire screen and freezes the desktop

• Firefox dialogs “cross the boundary” between the URL bar and content
(Only the valid dialog can do this!)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 80

CLICKJACKING DEFENSES

• Enforce temporal integrity
− Sufficient time for a user to register what they are clicking on

− Example:

• Firefox blocks the “OK” button until 1 second after the dialog has been focused

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 81

CLICKJACKING DEFENSES

• Require confirmation from users
− The browser needs to confirm that the user’s click was intentional

− Downside: asking for confirmation annoys users

• Frame-busting
− The legitimate website forbids other websites from embedding it in an iframe

− Defeats the invisible iframe attacks

− Can be enforced by Content Security Policy (CSP)

− Can be enforced by X-Frame-Options (an HTTP header)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 82

PHISHING

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 83

PHISHING

• Your account will be closed!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 84

PHISHING

• Your account will be closed!

• … is it?

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 85

PHISHING

• You need to log-in to PayPal

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 86

PHISHING

• You need to log-in to PayPal

• … is it?

noverflow@oregonstate.edu

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 87

PHISHING

• You need to log-in to PayPal

• … is it?

• … is it?

Neuron

Overflow

01-01-1970

2500 NW Monroe Ave

Corvallis

OR 97331

123-456-7890

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 88

PHISHING

• You need to log-in to PayPal

• … is it?

• … is it?

• … is it?

1234-4567-890A-BCDE

01/1990

123-456-7890

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 89

PHISHING

• Phishing
− Trick the victim into sending the attacker personal information

− Exploit:

• Users can’t distinguish between a legitimate website
and a website impersonating the legitimate website

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 90

PHISHING: CHECK THE URL?

• Is this website real?

“www.pnc.com/webapp/unsec/home
page.var.cn” is an entire domain!

The attacker can also register an HTTP
certificate for this valid domain

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 91

PHISHING: CHECK THE URL?

• Is this website real?

These letters come from the Cyrllic alphabet,
not the Latin alphabet! They’re rendered the
same but have completely different bytes!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 92

PHISHING: HOMOGRAPH ATTACK

• Homograph attack
− Create malicious URLs that look similar (or the same) to legitimate URLs

− Homograph: two words that look the same, but have different meanings

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 93

PHISHING: HOMOGRAPH ATTACK

• Homograph attack
− Create malicious URLs that look similar (or the same) to legitimate URLs

− Homograph: two words that look the same, but have different meanings

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 94

PHISHING: CHECK EVERYTHING

• … hmm it looks legit!

Extended Validation: CA
verified the identity of the site
(not just the domain)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 95

PHISHING: CHECK EVERYTHING

• … hmm it looks legit!
− Is it?

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 96

PHISHING: BROWSER-IN-BROWSER ATTACK

• Browser-in-browser attack
− The attacker simulates the entire web browser with JavaScript

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 97

PHISHING: NOW WHO’S THE FAULT?

• Let’s not blame the users
− They are not security experts

− Attacks are rare
• Users do not always suspect malicious action

• Detecting phishing is hard, even if you’re on the lookout for attacks

• Legitimate messages often look like phishing attacks!Title: Your Final Grades
Sender: Hóng (sanghyun@oregonstate.com)

Hey Guys,

There are some corrections on your final exam scores.
I need you to confirm your scores immediately from
here.

Thanks,
Sanghyun

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 98

PHISHING DEFENSE: 2FA

• Two-factor authentication
− Motivation

• Phishing attacks may expose your passwords to the attackers

• You want to make that the password is not sufficient for logging in

− Two-factor authentication (2FA)

• Prove their identity in two different ways before successfully logging-in

− Three main ways for a user to prove their identity
• Something the user knows: password, security questions

• Something the user has: mobile devices, security keys

• Something the user is: fingerprint, face ID

− Stealing one factor (password) is not enough

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 99

PHISHING DEFENSE: 2FA

• Two-factor authentication
− Protection scenarios

• An attacker steals the password file and performs a dictionary attack

• The user re-uses passwords on two different websites.
The attacker compromises one website and tries the same password on the 2nd one

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 100

PHISHING DEFENSE: 2FA WEAKNESS

• Relay attack
− The attacker steal both factors in a single phishing (one stone for two birds)

− Attack example

• User uses 2FA

• 1st : Password (something the user knows)

• 2nd: A code sent to the user’s mobile device (something the user owns)

− Procedure
• The phishing website asks the user to input their password (1st factor)

• The attacker immediately tries to log-in to the actual website as the user

• The actual website sends a code to the user

• The phishing website asks the user to enter the code (2nd factor)

• The attacker enters the code to log in as the user

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 101

PHISHING DEFENSE: 2FA WEAKNESS

• Relay attack illustration

1. Phishing: ask to log-in to Google

Victim Attacker Google

2. Type the username and password

3. Do log-in to the Google server

4. Google sends 2FA code to the user

5. Phishing: ask to type the 2FA code

6. “2FA code”
6. “2FA code”

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 102

PHISHING DEFENSE: 2FA WEAKNESS

• Social engineering
− Hijacking your phone

• Attackers can call your phone provider (e.g., T-mobile)

• Tell them to activate the attacker’s SIM card, and will be done

• They receive your texts

• 2FA via SMS is not great but better than nothing

− Bypassing customer service
• Attackers can call customer support and ask them to deactivate 2FA!

• Companies should validate identity if you ask to do this (but not all do)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 103

PHISHING DEFENSE: AUTHENTICATION TOKEN

• Auth token
− A device that generates secure second-factor codes

− Examples:

• RSA SecurID and Google Authenticator

− Usage

• The token and the server share a common secret key k

• When the user wants to log in, the token generates a code HMAC(k, time)

• The time is often truncated to the nearest 30 seconds for usability

• The code is often truncated to 6 digits for usability

• The user submits the code to the website

• The website uses its secret key to verify the HMAC

− Downside(s):

• Vulnerable to relay attacks

• Vulnerable to online brute-force attacks

• Possible fix: add a max number of times you can request!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 104

PHISHING DEFENSE: SECURITY KEY

• Security key
− A 2nd factor designed to defeat phishing

− User owns the security key

− Usage scenario

• User signs up for a website; the security key generates a new public/private key pair

• User gives the public key to the website

• If the user wants to log in, the server sends a nonce to the security key

• The security key signs the nonce, website name (from the browser), and key ID

• User gives the signature to the server

− Security keys prevent phishing

• In phishing, the security key generates a signature
with the attacker’s website name, not with the legitimate website name

• Impervious to relay attacks!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 105

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part V: Web security
	Slide 2
	Slide 3: Dictionary attack
	Slide 4: Dictionary attack
	Slide 5
	Slide 6: SQL injection
	Slide 7: SQL injection
	Slide 8
	Slide 9: Security risks on the internet
	Slide 10: Solution to the security risk
	Slide 11: Solution to the security risk
	Slide 12: Recap: URLs
	Slide 13: Solution to the security risk
	Slide 14: Solution to the security risk
	Slide 15: Solution to the security risk
	Slide 16: Same-origin policy exceptions
	Slide 17: Same-origin policy exceptions
	Slide 18: Same-origin policy exception (and a weakness)
	Slide 19
	Slide 20: Security risks on the internet
	Slide 21: Revisit: JavaScript
	Slide 22: Revisit: JavaScript – cont’d
	Slide 23: Revisit: JavaScript – cont’d
	Slide 24: Revisit: JavaScript – cont’d
	Slide 25: Revisit: JavaScript – cont’d
	Slide 26: XSS: Cross-site scripting
	Slide 27: XSS: Cross-site scripting
	Slide 28: XSS: Cross-site scripting
	Slide 29: XSS: Cross-site scripting
	Slide 30: XSS: Cross-site scripting
	Slide 31: XSS: Cross-site scripting
	Slide 32: XSS: Cross-site scripting
	Slide 33
	Slide 34: Motivation
	Slide 35: Motivation
	Slide 36: Cookies
	Slide 37: Cookies
	Slide 38: Cookies
	Slide 39: Cookies
	Slide 40: Cookies
	Slide 41: Cookies
	Slide 42: Cookies
	Slide 43: Cookies
	Slide 44: Cookies
	Slide 45: Cookies
	Slide 46
	Slide 47: Motivation
	Slide 48: Motivation
	Slide 49: Session token
	Slide 50: Session token
	Slide 51
	Slide 52: Security risks on the internet
	Slide 53: CSRF: Cross-site request forgery
	Slide 54: CSRF: Cross-site request forgery
	Slide 55: CSRF: Cross-site request forgery
	Slide 56: CSRF: Cross-site request forgery
	Slide 57: CSRF: Cross-site request forgery
	Slide 58: CSRF: Cross-site request forgery
	Slide 59: CSRF: Cross-site request forgery
	Slide 60: CSRF: Cross-site request forgery
	Slide 61: CSRF: Cross-site request forgery
	Slide 62: CSRF: Cross-site request forgery
	Slide 63: CSRF: Cross-site request forgery
	Slide 64: CSRF: Cross-site request forgery
	Slide 65
	Slide 66: Overview
	Slide 67: Clickjacking
	Slide 68: Clickjacking example
	Slide 69: Clickjacking example
	Slide 70: Clickjacking example
	Slide 71: Clickjacking example
	Slide 72: Clickjacking example
	Slide 73: Clickjacking example
	Slide 74: Clickjacking example
	Slide 75: Clickjacking example
	Slide 76: Clickjacking example
	Slide 77: Clickjacking example
	Slide 78: Clickjacking example
	Slide 79: Clickjacking example
	Slide 80: Clickjacking defenses
	Slide 81: Clickjacking defenses
	Slide 82: Clickjacking defenses
	Slide 83
	Slide 84: Phishing
	Slide 85: Phishing
	Slide 86: Phishing
	Slide 87: Phishing
	Slide 88: Phishing
	Slide 89: Phishing
	Slide 90: Phishing
	Slide 91: Phishing: check the url?
	Slide 92: Phishing: check the url?
	Slide 93: Phishing: homograph attack
	Slide 94: Phishing: homograph attack
	Slide 95: Phishing: check everything
	Slide 96: Phishing: check everything
	Slide 97: Phishing: browser-in-browser attack
	Slide 98: Phishing: now who’s the fault?
	Slide 99: Phishing defense: 2FA
	Slide 100: Phishing defense: 2FA
	Slide 101: Phishing defense: 2FA weakness
	Slide 102: Phishing defense: 2FA weakness
	Slide 103: Phishing defense: 2FA weakness
	Slide 104: Phishing defense: authentication token
	Slide 105: Phishing defense: security key
	Slide 106

