CS 578: CYBER-SECURITY
PART V: WEB SECURITY

Sanghyun Hong

sanghyun.hong@ oregonstate.edu

D
OregonState SAIL
&E University Secure Al Systems Lab

WHAT ARE THE ATTACKS IN THE WEB?

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

DICTIONARY ATTACK

* The security guarantee assumes
- We choose the password randomly!

* In reality
- (12345678) Easy to memorize and type
- (OregonBeaverRocks) Some phrases familiar
— (Oregon1234) Add numbers on the phrase
- (password1234!!) Add special characters at the end

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

DICTIONARY ATTACK

» Search space is significantly reduced
- Suppose that the password is
* 13 characters and consists of [A-Za-z0-9]
* = 6213 possible combinations (2.002854e23)
- Suppose that
* We know the password starts from ‘Portland’
* = 62° possible combinations (9.1613283e8)
e =10% smaller

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SQL INJECTION

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SQL INJECTION

* Exploit the system’s weakness

— SELECT (username, password) FROM users WHERE username = ‘neuronoverflow’
and password = SHA256(secret + “my-super-secure-password!@#511”)

CS370 Micro-labs Users Scoreboard Challenges

* SQL injection
- We supply ‘or ‘a’=‘a as a password Login

— SELECT (username, password) FROM
users WHERE User Name or Email

username = ‘neuronoverflow’
and password = “ or ‘@’ =@’

Password
— THIS IS ALWAYS TRUE!!!
Forgot your
password? m
e

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 6

SQL INJECTION

* What if we supply ‘ union select (‘admin’, ‘@’) where ‘a’=‘a as a password?
— SELECT (username, password) FROM users WHERE
- username = ‘neuronoverflow’ and password = “

A () __()

union select (‘admin’, ‘a’) where ‘a’="a

* You will have the admin
- None for the first select statement
- and the 2" statement will query
* Username = ‘admin’
e Password = ‘@’
* Always return true @’ = ‘a

’

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SAME ORIGIN POLICY

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

SECURITY RISKS ON THE INTERNET

cccccccccc

* RiskI: How much COVID is in my community? It’s getting harder
- Malicious websites should not be able to totell

tamper with our information or interact-

SUBSCRIBERS ARE READING)

ions on other websites
- Example:
* We visit “latimes.com”
* Malicious folks do “ad” on this site
* The “ad” runs some JavaScripts and

14 things to do in Los Olivos, the magical
country town filled with wine and lavender
blooms

TELEVISION

Hulu documentary delves deeper into the
Randall Emmett scandal >

LAKERS

Plaschke: | was wrong: These Lakers can win an
NBA championship

extracts our information from “latimes”

‘ 2 ; - FREE :
£ AZURE CLOUD
h 1 h f H | d Bianca Povalitis, center, along with fellow roller skaters enjoy an evening at Venice Beach Skate Plaza in June 2022. (Jason READINESS a 1
e.g., which type of articles we rea TR oo
e 7

BY LUKE MONEY, RONG-GONG LIN Il

Qo -

| want to know what you read! !

Oregon State
&7 University
i Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 9

SOLUTION TO THE SECURITY RISK

e Same-origin policy

- A rule that prevents one website from tampering with other unrelated websites

* Enforced by the web browser

* Prevents a malicious website from running scripts on other websites

* Pages from the same site don’t need to be isolated to each other

browser:
b '
< .s. .1 No security |
| i ikipedia.
=40 P?mer wikipedia.org
wikipedia.org

%9 Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

browser:

securlty
barrler

wikipedia.org

mozilla.org

10

SOLUTION TO THE SECURITY RISK

e Same-origin policy
- A rule that prevents one website from tampering with other unrelated websites
e Enforced by the web browser
* Prevents a malicious website from running scripts on other websites
* Pages from the same site don’t need to be isolated to each other

LAKERS

Plaschke: | was wrong: These Lakers can win an
NBA championship

FREE B
AZURE CLOUD
READINESS a
ROADMAP $ 7

Browser:

Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 11

RECAP: URLS

e Same-origin policy
- A rule that prevents one website from tampering with other unrelated websites
* Enforced by the web
* Prevents a malicious website from running scripts on other websites
* Pages don’t need to be isolated to each other

— Every webpage has an origin defined by its URL with three parts:
* Protocol: The protocol in the URL
: The domain in the URL’s location

* Port: The port in the URLs location
(If not specified, the default is 80 for HTTP and 443 for HTTPS)

e Example:
— https:// /assets/photo.png (default: 443)
- http:// :80/assets/new_photo.png

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SOLUTION TO THE SECURITY RISK

e Same-origin policy

- Two websites have the same origin if and only if
- The protocol, domain, and port of the URL all match exactly

Domain |

Domain Il

Same-origin?

https://cs.org

http://www.cs.org

No, domain mismatch

http://cs.org

https://cs.org

No, protocol mismatch

http://cs.org:80

http://cs.org:8080

No, protocol mismatch

https://cs.org/photo.png

https://cs.org/data/my.htm

Yes

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

13

SOLUTION TO THE SECURITY RISK

e Same-origin policy

- Two websites have the same origin if and only if
- The protocol, domain, and port of the URL all match exactly

Domain |

Domain Il

Same-origin?

https://cs.org

http://www.cs.org

No, domain mismatch

http://cs.org

https://cs.org

No, protocol mismatch

http://cs.org:80

http://cs.org:8080

No, protocol mismatch

://cs.org/photo.png

https://cs.org/data/my.htm

Yes

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

14

SOLUTION TO THE SECURITY RISK

e Same-origin policy
- Two websites have the same origin if and only if
- The protocol, domain, and port of the URL all match exactly
- Example scenario:
* c¢s.org embeds google.com
* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

15

SAME-ORIGIN POLICY EXCEPTIONS

e Same-origin policy
- Two websites have the same origin if and only if
- The protocol, domain, and port of the URL all match exactly
- Example scenario:
* c¢s.org embeds google.com
* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one
- Exception I:
 JavaScript runs with the origin of the page that loads it

* ex. cs.org fetches JavaScript from google.com:
- The JavaScript has the origin of cs.org
- c¢s.org has “copy-pasted” JavaScript onto its webpage

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

16

SAME-ORIGIN POLICY EXCEPTIONS

LAKERS

Plaschke: | was wrong: These Lakers can win an
NBA championship

e Same-origin policy

- Two websites have the same origin if and only if ,
~ The protocol, domain, and port of the URL all match exactly ===~ | ElT ;
- Example scenario:

* c¢s.org embeds google.com

id. f ?‘ NS
ha N
()0neNeck

* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one

- Exception Il:
» Websites can fetch and display images/frames from other origins

* The website only knows about the image’s size and dimensions (restricted info.)
* The image and the frame has the origin of the page that it comes from (restricted)

iR
) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 17

SAME-ORIGIN POLICY EXCEPTION (AND A WEAKNESS)

LAKERS

e Same-origin policy

— Two websites have the same origin if and only if .
- The protocol, domain, and port of the URL all match exactly “=====" | MgEa"
- Example scenario:

* cs.org embeds google.com

i N
()0neNeck

* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one

- Exception IlI: postMessage(“run”, script)
* Websites can agree to allow some limited sharing
* Cross-origin resource sharing (CORS)
* ex. the postMessage function in JavaScript

- Receiving origin decides if to accept the message based on the origin
- The correctness is enforced by the browser

iR
) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 18

eeeee

CROSS-SITE SCRIPTING (XSS)

Al Systems Lab (SAIL) :: CS578 - Cyber-security

19

SECURITY RISKS ON THE INTERNET

. Rank
¢ R I S k I I Rank j] Name Score C::ﬁ:t Ch‘?:ge
(CVEs) 202'1
1 WE-787 ||Out-of-bounds Write 64.20 62 0
2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0 I
3 m Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 ||Improper Input Validation 20.63 20 0
5 CWE-125 |Out-of-bounds Read 17.67 1 -2 v
6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')| 17.53 32 -1 ¥
7 CWE-416 |Use After Free 15.50 28 0
8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0
9 WE-352 |Cross-Site Request Forgery (CSRF) 11.53 1 0
10 CWE-434 |Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 |NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 |(Integer Overflow or Wraparound 6.53 2 -1 v
14 CWE-287 |Improper Authentication 6.35 4 0
15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 ||Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |Missing Authentication for Critical Function 5.15 6 -7 v
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 v
20 CWE-276 ||Incorrect Default Permissions 4.84 0 D 4
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 WE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') 3.57 6 +11 A
23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 |Improper Restriction of XML External Entity Reference 3.38 0 -1 v
25 CWE-94 |Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A
Orggqutate Ihttps://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
<’ University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 20

REVISIT: JAVASCRIPT

* JavaScript
- A programming language for running code in the web browser
- Runs on the
* The server sends code as part of the HTTP response
* The code runs in the browser, not in the web-server
- Used to manipulate web pages (HTML and CSS)
* Makes modern websites interactive
 JavaScript can be directly embedded in HTML with <script> tags
- Supported by all modern web browsers
e Most modern webpages involve JavaScript

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

21

REVISIT: JAVASCRIPT — CONT’D

 JavaScript example
— Create a pop-up message
- HTML: <script>alert("Hello world!")</script>

(N\
Hello world!
_ J

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

If the browser loads the HTML,
it will run the embedded JavaScript
and create a pop-up window.

22

REVISIT: JAVASCRIPT — CONT’D

* JavaScript in Go
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"][0]
fmt.Fprintf (w, "<html><body>Hello %$s!</body></html>", name)

- You can use this script to render the website with the given name

https://cs370.com/hello?name=Bob

- You will receive the following response (and the browser renders it)

<html><body>Hello Bob!</body></html>

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

REVISIT: JAVASCRIPT — CONT’D

* JavaScript in Go
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"][0]
fmt.Fprintf (w, "<html><body>Hello %$s!</body></html>", name)

- You can use this script to include HTML tags

https://cs370.com/hello?name=Bob

- You will receive the following response (and the browser renders it)

<html><body>Hello Bob!</body></html>

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

REVISIT: JAVASCRIPT — CONT’D

* JavaScript exploitation
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"][0]
fmt.Fprintf (w, "<html><body>Hello %$s!</body></html>", name)

- You can use this script to include HTML tags

https://cs370.com/hello?name=<script>alert (1)</script>

- You will receive the following response (and the browse 1
<html><body>Hello <script>alert(l)</script>!</body></html>

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

25

XSS: CROSS-SITE SCRIPTING

* Cross-site scripting
- An adversary injects malicious JavaScript to a legitimate website
* The victim accesses the legitimate website
* The legitimate website sends the attacker’s JavaScript to the victim
* The victim’s browser will run the script with the origin of the legitimate website
* Now the attacker’s JavaScript can access information on the legitimate website
- It evades the same-origin policy
* The JavaScript will run with the same origin (as the legitimate website)
- Two representative XSS attacks
 Stored XSS
* Reflected XSS

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

26

XSS: CROSS-SITE SCRIPTING

» Stored XSS (Persist XSS)
- The attacker’s JavaScript is stored on the legitimate server
- Example: Facebook pages
* Anyone can load a Facebook page with content provided by users
* An adversary puts some JavaScript on their Facebook page
* Anyone who loads the attacker’s page will run JavaScript (with the origin of Facebook)
- Note: stored XSS requires the victim to load the page with injected JavaScript

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

27

XSS: CROSS-SITE SCRIPTING

 Stored XSS illustration
- The attacker’s JavaScript is stored on the legitimate server
- Note: stored XSS requires the victim to load the page with injected JavaScript

2. Request website contents

iR
) Oregon State
%‘5 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

XSS: CROSS-SITE SCRIPTING

* Reflected XSS

- The attacker has the victim input JavaScript into a request
- The content is reflected (copied) in the response from the server
- Example: Search
* The victim makes a request to http://google.com/search?g=Bob
* The response will be “XYZ results for Bob”
* The victim makes a request to http://google.com/search?q=<script>alert(1)</script>
* The response will be “XYZ results for <script>alert(1)</script>"
- Note: reflected XSS requires the victim to make a request with injected JavaScript

iR
) Oregon State
%@ University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

29

http://google.com/search?q=Bob
http://google.com/search?q=%3cscript%3ealert(1)%3c/script%3e

XSS: CROSS-SITE SCRIPTING

* Reflected XSS illustration
- The attacker has the victim input JavaScript into a request
- The content is reflected (copied) in the response from the server

2. Request URLs under the attack’s control

) P

D et T e e e e P P PP e P >
ﬂ;:~\ 5. Send malicious requests and receives resp.
~
4.The victim runs the r}Tachious script
‘\:\\
\\:\\\
ss\::\\
N3 6. Receives sensitive data
~
N3 (e.g., session token)
S ~,
\\\\\\

s\::"
1. Make the victim do malicious requests \w
(e.g., click the link in a spam)

iR
) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 30

XSS: CROSS-SITE SCRIPTING

* Reflected XSS (Practicality)

- How do we make the victim to make such malicious requests?
* Make a malicious website that includes an embedded iframe which makes the request

- Make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
- <iframe height=1 width=1 src="http://google.com/search?g=<script>alert (l)</script>">

 Trick the victim into clicking the link

- Posting a link on social media

- Sending a text (Here is a new photo from your friend XYZ...)

- Sending a phishing email
* The link will load the attacker’s website and redirects to the reflected XSS link
* ..(Good luck then) ...

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

31

XSS: CROSS-SITE SCRIPTING

* Defenses
- HTML sanitization
- HTML escaping
- Content security policy (CSP)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

32

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

COOKIES

33

MOTIVATION

e HTTP is state-“less”
- lllustrating example
* Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”
* Today, Bob visited “facebook.com” and found that the language is “English”
* Bob sets it to “Sanskrit”
* ...(do this unlimited times)

5.15.2023 Set my language to “Sanskrit”

ﬁ __ ->
5.16.2023 Set my language to “Sanskrit”

—— ->
“ 5.17.2023 Set my language to “Sanskrit”

__ >

... (5.17.2100 Set my language ...)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

34

MOTIVATION

* Solution:
- lllustrating example
* Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”
* The server sends containing the language pref.
* The browser stores the data to its cookie jar
* Today, Bob visited “facebook.com” and see the “Sanskrit” version

5.15.2023 Set my language to “Sanskrit”

5.15.2023 HTTP response with

“ 5.16.2023 HTTP request

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

35

COOKIES &

e Cookies

- A small blocks of data
* The server sends cookies as a part of their HTTP response (no cookies at the first time)
e HTTP Header:
- Set-cookie: name = value;
- (It’'sa with some extra metadata)
- Example:
>HTTP/1.1 200 OK
> Content-Type: text/html
> Set-Cookie: items=16
> Set-Cookie: headercolor=blue
> Set-Cookie: footercolor=green
> Set-Cookie: screenmode=dark, Expires=Sun, 1 Jan 2023 12:00:00 GMT

* Let’s take a look (Chrome: view > developer > developer tools > application > Cookies)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

36

COOKIES &

* Cookie scope
- A small blocks of data

* The server sends cookies as a part of their HTTP response (no cookies at the first time)

e HTTP Header:
- Set-cookie: name = value;
-/ Domain = (when to send);
-|Path = (when to send);

* The server automatically attaches the cookies in scope

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

37

COOKIES &

* Cookie scope
- A small blocks of data
* The server sends cookies as a part of their HTTP response (no cookies at the first time)
e HTTP Header:
- Set-cookie: name = value;
- Domain = (when to send);
- Path = (when to send);

* The server automatically attaches the cookies in scope
* The cookies can only be sent via secure communication (using TLS)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

38

COOKIES &

* Cookie scope
- A small blocks of data
* The server sends cookies as a part of their HTTP response (no cookies at the first time)
HTTP Header:
- Set-cookie: name = value;

Domain = (when to send);
Path = (when to send);
Secure = (only send over HTTPS);

The server automatically attaches the cookies in scope

The cookies can only be sent via secure communication (using TLS)

The browser should delete the cookies after a certain expiration date
HttpOnly: cookies cannot be accessed by JavaScript; only for HTTP requests

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 39

COOKIES &

* Cookie policy
- The server sets the scope (domain and path) on cookies
- The browser sends the cookies based on the scope

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

40

COOKIES &

* Cookie policy
- The server sets the scope (domain and path) on cookies
* Domain can be any domain-suffix of URL-hostname (not a TLD)
e Example:
- The server “login.cs370.com” sends cookies; can it
set cookies in the browser for “cs370.com”?

set cookies in the browser for “.cs370.com”?

set cookies in the browser for “secret.cs370.com”?

- set cookies in the browser for “.com”?
- set cookies in the browser for “osu-cs370.com”?
* Path can be set to any path

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

41

COOKIES &

%“@

Cookie policy

- The browser sends the cookies based on the scope

e Suppose the cookie we haveis
- domain: “
- path :“/micro-labs”

* The browser can include the cookies in the request to:
- http://login. /micro-labs/week1/sanity-check

n

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

42

COOKIES &

* Example:
- Cookie 1: - Cookie 2:
* name = neuronoverflow * name =test
* value = ctf-admin * value = ctf-player
e domain = login.cs370.com * domain =.cs370.com
e path=/ * path=/
* non-secure * non-secure

— Which cookies will be sent?

* “http://checkout.cs370.com”
* “http://login.cs370.com”

* “http://osu-cs370.com”

» “https://login.cs370.com”

S

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

COOKIES &

e Cookies vs. same-origin policy
- SOP requires an exact match between domains
- Cookies do not always require an exact match; scope matters
- Example:
* Suppose we have a cookie:

— nhame = neuronoverflow
value = ctf-admin

domain =login.cs370.com
path =/
non-secure
* “http://users.cs370.com”
- JavaScript on this URL can access the cookie above...

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

COOKIES &

* Bypass same-origin policy
- SOP requires an exact match between domains

[1 1)
' ‘ 1. The “facebook.com” sends cookies (e.g., session token)
[T e e e e e e e e e e e e e e e e e m e —m e

T Sseal

: 2 3- ~~~~“~~

\ Victjpy =~~~

login facebook.com CCegg ~~~~o login facebook.com
237

& Oregon state m1234.facebook.com
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 45

eeeee

SESSION AUTHENTICATION

Al Systems Lab (SAIL) :: CS578 - Cyber-security

46

MOTIVATION

* Session authentication
- Motivating example
* Bob visited “oregonstate.com” and login with their username, password
* Bob, 5-min later, visit “oregonstate.edu”
* The website asks their usernamd and password
* Bobisvery happy...

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

47

MOTIVATION

e Session authentication

- Motivating example
* Bob visited “oregonstate.com” and login with their username, password

Bob, 5-min later, visit “oregonstate.edu”
The website asks their usernamd and password

Bob is very happy...

A secret value for associating requests with a legitimate user
In the first visit to the website:
- Type the username and password

- The browser receives a session token (the server remembers this token)
The subsequent visits to the website

- Include the session token in the requests

- The server checks if the token is valid and is not expired

- Then the server processes the request

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

48

SESSION TOKEN

e Session authentication

— Session token ’
* A secret value for associating requests with a legitimate user
* In the first visit to the website:
- Type the username and password
- The server sends
- The browser receives a session token (the server remembers this token)
* The subsequent visits to the website
- Include the in the requests
- The server checks if the token is valid and is not expired
- Then the server processes the request
* If one logs-out
- The browser and server delete the session token

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

49

SESSION TOKEN

* + cookies &
- Security
* Suppose that the session token is stolen:
- The attacker can impersonate you in any request
- ... You are friendly-up!
* To ensure the security
- The server needs to generate session tokens randomly and securely
- The browser requires to
> Check if malicious website cannot steal tokens (GSB)
>>Make sure they do not send session tokens to malicious websites

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

50

https://safebrowsing.google.com/

eeeee

CROSS-SITE REQUEST FORGERY (CSRF)

Al Systems Lab (SAIL) :: CS578 - Cyber-security

51

SECURITY RISKS ON THE INTERNET

. Rank
¢ RISk I” Rank j] Name Score C::ﬁ:t Ch‘?:ge
(CVEs) 202'1
1 WE-787 ||Out-of-bounds Write 64.20 62 0
2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
3 CWE-89 |Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 ||Improper Input Validation 20.63 20 0
5 CWE-125 |Out-of-bounds Read 17.67 1 -2 v
6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')| 17.53 32 -1 ¥
7 CWE-416 |Use After Free 15.50 28 0
8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0
9 FZ Cross-Site Request Forgery (CSRF) 11.53 1 0 I
10 | CWE-434 |Unrestricted Upload of File with Dangerous Type 9.56 3 0
11 CWE-476 |NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 |(Integer Overflow or Wraparound 6.53 2 -1 v
14 CWE-287 |Improper Authentication 6.35 4 0
15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 ||Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |Missing Authentication for Critical Function 5.15 6 -7 v
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 v
20 CWE-276 ||Incorrect Default Permissions 4.84 0 D 4
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 WE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') 3.57 6 +11 A
23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 |Improper Restriction of XML External Entity Reference 3.38 0 -1 v
25 CWE-94 |Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A
Orggqutate Ihttps://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
<’ University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 52

CSRF: CROSS-SITE REQUEST FORGERY

* CSRF (one-click attack or session riding)
- Make legitimate users to send malicious requests to the server
* The attacker impersonates a legitimate user

* The user’s browser will automatically attach (malicious) cookies
(It exploits the cookie-based authentication mechanism)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

53

CSRF: CROSS-SITE REQUEST FORGERY

* CSRF (one-click attack or session riding)
- Attack lllustration
* A user authenticates to the server
* The attacker tricks the user into making a malicious request
* The server accepts the malicious request from the legitimate user
* The server is the target!

)

iR
) Oregon State
%@ University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

54

CSRF: CROSS-SITE REQUEST FORGERY

* CSRF (one-click attack or session riding)
- How can an adversary trick the user?

* GET request:

Make the user into clicking a link (SMS, Spam, ...)
https://bank.com/transfer?amount=10000&to=Mallony

Put some html on a website the victim will visit (1x1 pixel image with a request)
-

N *

3. Make malicious requests

a//C/.o \\;\ ~~.
Q S
Ue

St

\h

iR
) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CSRF: CROSS-SITE REQUEST FORGERY

* CSRF (one-click attack or session riding)
- How can an adversary trick the user?
* Post request:
Make the user into clicking a link (run JavaScript on the website a user opens)

ex. The link opens an attacker’s website, and it runs some JavaScript code
Put some JavaScript on a website the user will visit

ex. The attacker pays for an ad. and put JavaScript code there

N *

3. Make malicious requests

a//.C/'oz; RS -

r@ S
U@SZ~ ~

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CSRF: CROSS-SITE REQUEST FORGERY

* CSRF I= Reflected XSS

- Reflected XSS: Make the user (victim) run malicious scripts
- CSRF : Make the server run malicious scripts

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

57

CSRF: CROSS-SITE REQUEST FORGERY

* Real-world examples (Facebook, YouTube) ONET o

Facebook SMS Captcha Was
Vulnerable to CSRF Attack Researchers find security holes in
NYT, YouTube, ING, MetaFilter
e sites

® M Attackers could have used vulnerabilities on several Web

sites to compromise people's accounts, allowing them to

steal money, harvest e-mail addresses, or pose as others
This post is about an bug that I found on Meta (aka Facebook) which allows online.

Elinor Mills
s 2minread >
=¥ Oct. 2,2008 2:31 p.m. PT

Updated at 1:30 p.m. PDT with the New York Times saying they fixed
request I got hit with SMS captcha flow. the hole.

to make any Endpoint as POST request in SMS Captcha flow which leads to
CSRF attack.

After reporting Contact Point Deanonymization Bug I started to find any way

to bypass it in Account recover flow. but when sending multiple OTP code

Vulnerable Endpoint: A new report from researchers at Princeton University reveals serious
Web site security holes that could have been exploited to steal ING
customers' money and compromise user privacy on YouTube, The New
https://m.facebook.com/sms/captcha/?next=/path York Times' Web site, and MetaFilter.

The sites have all fixed the holes after being notified by the report's
when digging deeper in captcha page I found that next= parameter is (PDF) researchers, William Zeller and renowned security and privacy
vulnerable to CSRF attack. because the Endpoint doesn't have any CSRF researcher and Princeton computer science professor Edward Felten.

iR
) Oregon State
%‘5 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

https://lokeshdlk77.medium.com/facebook-sms-captcha-was-vulnerable-to-csrf-attack-8db537b1e980
https://www.cnet.com/news/privacy/researchers-find-security-holes-in-nyt-youtube-ing-metafilter-sites/

CSRF: CROSS-SITE REQUEST FORGERY

* Defenses
- CSRF tokens
- Referer validation
- Same-site cookie attribute

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

59

CSRF: CROSS-SITE REQUEST FORGERY

e Defenses

- CSRF tokens
that the server provides to the user
* The user must include the same value in the request for the server

- Note
* The token should not be sent to the server in a cookie
* The token and stored to a storage

* The token shouldn’t be like a session token (it should expire after 1-2 requests)

- Example:
* HTML forms: vulnerable to CSRF (the attacker can do a POST request with their forms)
 |f a user requests from a form, the server attaches a CSRF token as a hidden form field
* The attacker’s JavaScript won’t be able to create a valid form

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

60

CSRF: CROSS-SITE REQUEST FORGERY

e Defenses

- CSRF tokens
that the server provides to the user
* The user must include the same value in the request for the server

000 Irmem e e e e e e e e e e e e e e e e -
' ‘ 2. Get the token

4. Make malicious requests (fail!)

a//C/.O(‘;\‘x ~o
re
(o7

1R
<P Oregon State
%"9 Uni\%ersity
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

61

CSRF: CROSS-SITE REQUEST FORGERY

e Defenses

- Referer header
in an HTTP request that shows which webpage made the request
* In CSRF, the user makes malicious requests from a different website

- “Referer” is a 30-year typo in the HTTP standard...
If we make a request from “facebook.com” then the header is “https://www.facebook.com’

If an “img” tag on a forum makes your browser to make a request
then the Referer header will be “the forum’s URL’

If JavaScript on an attacker’s website makes your browswer to make a request
then the header will be “the attacker’s website URL’

* The server checks the Referer header
- Reject if it’s not from the same-site
- Accept if it’s from the the same-site

)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

62

CSRF: CROSS-SITE REQUEST FORGERY

e Defenses

- Referer header
in an HTTP request that shows which webpage made the request
* Potential issues:

- The server can “observe” the user’s private info. from the header
(ex. “facebook.com/<your-friend-name>/posting_1234")

- Oftentimes, network firewalls (or your browswers) remove this header...
- The header is optional; some requests can come without the header (what should we do...)

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 63

CSRF: CROSS-SITE REQUEST FORGERY

e Defenses

- Same-site cookies
* Seta on a cookie unexploitable by CSRF attacks
* The browser will send requests when the domain of the cookie = that of the origin
- SameSite = none
- SameSite = : check if the domain matches

* Potential issue: not all browsers implements this attribute

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

64

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

Ul ATTACKS

65

OVERVIEW

e Ul attacks
- What is it?
* The attacker tricks the victim into thinking
* They are taking an intended action when they are actually taking a malicious action

- What to exploit?
* User interfaces: the trusted path between the user and the computer
* Your browser blocks the website to interact across different origins (SOP)
e But trusts the user to do whatever they want

- Two representative attacks
* Clickjacking: Trick the victim into clicking on something from the attacker
* Phishing: Trick the victim into sending the attacker personal information

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

66

CLICKJACKING

* Clickjacking
- What is it?
* Trick the victim into clicking on something from the attacker

- What to exploit?
* Userinterfaces: the trusted path between the user and the computer
* Your browser trusts “your clicks”
* If you click something, the browser believes you intend to click that

- What can the attacker do?
* Download a malicious program
* Like a YouTube video(s), Instagram pages, or Amazon products
 Steal keystrokes (once sth is downloaded)

- Good luck to your credit card numbers, passwords, or any personal info.

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

67

CLICKJIACKING EXAMPLE

 Download buttons
- What is the right button?

- What happens if | click
the wrong button(s)?

Oregon State
&7 University
; Secure Al Systems Lab (SAIL) ::

Download.com

Reweews

3 Steps for a faster install & scan
1. Click "Start Download” e
2. Run the quick wan
3. Scan & Fix up 10 100 errores

Sotwate

CNET Editors’ Rating:
2.2.2 9.8 4

Owtstandng

Average User Rating:
2. 2.8.8.0.1

ot of 5573 weas

See all user renews

ENTORS”
CHONCE

3

News, Download CNET IV How To Deals

Start Download

Art-Spywate

“« Malwarebytes Anti-Malware

CNET Editors' note:

The Malwaredytes Free edtion offers users the option of
nstaling a tnal version of Malwarebytes Ant-Malware Pro

CNET Editors" review

eth Rosenbistt

The bottom line: A lack of recent substantive updates
haven prevented Malwarebytes Ants-Malware from staying
on top of the on-demand malware-killing mountan

Review:
Malwarebytes Art-Madware 5 a surprisingly effectve
anti-mahware tool given that & hasn't received any maor
updates n the past few years. Sure, the scons are abd
faster and the nstaliabon is defintely smoother, bt overall
the product remans unaltered
Installation

Login | Join
. ARO* 2012

ARO a0 16 weiey
o Oomricand core
3 Steps for a faster install & scan

Thioe easy stegs

3. Scan & Fix uu m 100 tegstry 1008

START DOWNLOAD

ARD i 2 %0 10 wtibty
on O o

. ARO® 2012

Free Antivirus Download
r’-’.."mr-: 71 in Antrarys Sotware! Remove Vieuses
Spyware & Tropes

22 Lo

Remove Wmdows Trolans

wans Quc Follow These 3

How to Remove Tro

CS578 - Cyber-security

68

CLICKJIACKING EXAMPLE

e “iframe” can be vulnerable

A E ﬁ @ 0 m Result Size: 731x 753 CESTITAAVLRUTE I

<!DOCTYPE html>

<htnl> Happy to load the UW

<body>

Note: any links on the
website in the iframe
are “washington.edu”

<hl>Happy to load the UW</hl>

<iframe
src="https://www.washington.edu/"
title="I loaded this UW in my iframe"
width="700" height="600"></iframe>

</body>
</html>

Users can click it, but
we cannot make the
website automatically
click this link due to
the same origin policy

RE OF CLIVATE CHANGE

PULLING TOGETHER >

s://www.washington.edu/news/2023/04/18/qa-county-scale-climate-mapping-tool-helps-washington-agencies-prepare-for-the-future/2utm_sour

P Oregon State

<7 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 69

CLICKJIACKING EXAMPLE

* “iframe” can be vulnerable — let’s change the code a bit

') E ﬁ @ O m Result Size: 731x 753 IS LR I G

E{!IZEE?PE o Happy to load the UW Put StYl €. 0Opa city to
control the “opacity”

<h1>Happy to load the UW</hl>

<p style="margin-top: 210pt">
My original website is in Here!
</p>

There’s a text behind
the iframe loaded the
“washington.edu”

</body>
</html>

PULLING TOGETHER >

https://www.washington.edu/news/2023/04/18/qa-county-scale-climate-mapping-tool-helps-washington-agencies-prepare-for-the-future/?utm_source=uwhp&utm_medium=topstory&utm_campaign=mapping-c..

P Oregon State

o University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CLICKJIACKING EXAMPLE

“iframe” can be vulnerable — let’s add some opacity
@ E ﬂ @ o Result Size: 731x 753 AR RVE G

<!DOCTYPE html>

<henl> Happy to load the UW

<body>

<h1>Happy to load the UW</hl1>

103 ded this Uwgln my iframe" My original website is in Here!
00" height="600"></iframe>

p: —-400p
 , . , ,
My original website is in Here!</p>

</body>
</html>

§ Oregon State
Universi
i Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 71

CLICKJACKING EXAMPLE

* “iframe” can be vulnerable — some more (or do extremely)

<!DOCTYPE html>
<html>
<body=>

<h1l>Happy to load the UW</hl>

<iframe
fyle="opacity: a"
src="https://www.washington.edu/"
title="I loaded this UW in my iframe"
width="708" height="600"></iframe>
<p style="margin-top: -40@pt">
<em=
My original website is in Here!</p>

</body>
</html>

https://www.washington.edufnews/2023/04/18/qa-county-scale-climate-mapping-tool-hel

Oregon State
University

Result Size: 731 x 753 ST RN H)

Happy to load the UW

My original website is in Here!

Now the website is
completely opaque

But you can still click
something on this
website ... ?!

Ips-washington-agencies-prepare-for-the-future/?utm_source=uwhp&utm_medium=topstory&utm_campaign=mapping-c...

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CLICKJACKING EXAMPLE

* Invisible “iframe”s
— The attacker puts an iframe onto the attacker’s Happy to load the UW
site invisibly, over visible, enticing content
- Users (victims) think they click Myoriginal websie s i Here!

on the attacker’s website

- But the click is actually happened
on the legitimate website

- ex. You click sth, but it’s the Facebook like btn

1elps-washington-agencies-prepare-for-the-future/?utm_source=uwhp&utm_medium=topstory&utm_campaign=mapping-c...

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 73

CLICKJIACKING EXAMPLE

. . . Result Size: 731 x 753
* |nvisible “iframe”s — cont’d - .
Happy to load the UW

- The attacker puts an iframe onto the legitimate
site invisibly, under invisible, malicious content

- Users (victims) think they click
on the legitimate website

- But the click is actually happened
on the attacker’s website

- ex. You click sth, and it downloads malware

e ——
== L~
o —

PULLING TOGETHER >

ington-agencies-prepare-for-the-future/?utm_source=uwhp&utm_medium=topstory&utm_campaign=mapping-c.

<) Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 74

CLICKJACKING EXAMPLE

* Invisible “iframe”s — cont’d

Express Checkout

Order summary (1) Edit Cart
PayPal Checkout
@ W Violet T-Shirt $0.99
or continue below Qty: 1

More Details

Already have an account? Log_in for a faster checkout.

() Enter a promo code

5 Redeem a gift card

1 Shipping details

*Email for order confirmation Subtotal $0.99
Shipping $0.00
Sales Tax $0.00
*First name
Total $0.99

- The attacker frames the legitimate site, with the visible malicious contents
- ex. You click the checkout, and | wish you the best!

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CLICKJACKING EXAMPLE

* Temporal attack
- Process
* The attacker uses JavaScript
* that detects the position of your cursor
* and change the website right before you click on sth.

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

76

CLICKJACKING EXAMPLE

* Temporal attack
- Example:

o

Instructions:

Please double-click on t}

content

Goo SIC Clickjacking

Clickjacking 1s requesting permission to

» Manage your contacts

W

your

Oregon State

University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

77

CLICKJACKING EXAMPLE

e Cursorjacking

- CSS can style the appearance of your cursor
- JavaScript can track a cursor’s position

- We can create a fake cursor to trick users into clicking on sth.

Clickjacking

GO . 'SIC

Clickjacking is requesting permission to

Instructions:
Please double-click on thg&——"—""—"— A
content Real cursor: created by

JavaScript or with CSS

to

* Manage your contacts

iR
) Oregon State
%‘5 University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

Ch;*lklhrﬁie
J

Fake cursor: created by
JavaScript or with CSS

78

CLICKJACKING EXAMPLE

e Cursorjacking

- CSS can style the appearance of your cursor
- JavaScript can track a cursor’s position

- We can create a fake cursor to trick users into clicking on sth.

e
=

Do you believe your cursor?

iR
) Oregon State
%@ University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

CLICKJACKING DEFENSES

* Enforce visual integrity

- Clear visual separation between important alerts and content

- Examples:

III

 Windows “User Account Contro

* Firefox dialogs “cross the boundary” between the URL bar and content

(Only the valid dialog can do this!)

6‘ 1 Do you want 1o allow the following program to make
,

N changes to this computer?
Program name: Firefox Installer

&) Veified publisher: Mogills Corporation

File copn Haed drwve on tha computer

¥ Show detads

LYo

iR
) Oregon State
%‘Ej University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

darkens the entire screen and freezes the desktop

I R WP ————

) n https outlook. live.comjowa/?realm=hot

loginJive.com
Would you like Firefox to remember this login?

peunlocker@hotmail .com

Eemember =

ﬁ_‘| You can access your passwords on all your devices
J with Sync. Learn More

Z L Search ﬂ'

pra

Drafts

80

CLICKJACKING DEFENSES

* Enforce temporal integrity
- Sufficient time for a user to register what they are clicking on
- Example:

* Firefox blocks the “OK” button until 1 second after the dialog has been focused

hato

Opening slack-desktop-4.16.0-amd64.ded

slack-desktop-4.16.0-amd64.ded

7.5 MB)

What should Firefox do with this file?

Archive Manager (default)

O3ave File

atQ

Opening slack-desktop-4.16.0-amd64.deb

slack-desktop-4.16.0-amd64.deb
m: MEpsd/dow 238 slack - edoe corm

What should Firefox do with this file?

Arch

O5ave File

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

81

CLICKJACKING DEFENSES

from users
- The browser needs to confirm that the user’s click was intentional
- Downside: asking for confirmation annoys users

m CEEMESIEx B <3 Get your own website
<!DOCTYPE html>

<hinl> Happy to load the UW

<body>
<h1>Happy to load the UW</hl>

<iframe
style="opacity: 1.0"

- The legitimate website forbids ot] e remstate.en e

title="I loaded this UW in my iframe"
width="780" height="600"></iframe>
style="margin-top: -480pt">

— Defeats the invisible iframe attac| ™ i rimsimsprnmen:

My original website is in Here!</p>

— Can be enforced by Content Secu| <.
— Can be enforced by X-Frame-Opti

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 82

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING

83

PHISHING

PayPal

e Your account will be closed! RS R T
' PayPal
Your Account Will Be Closed !

What do | need to do?

w

Heolp Contact Security

How do | know this is not a Spool email?

%‘Iﬁ Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING

e Your account will be closed!

e ...isit?

‘.,,; Oregon State
%l-, S - i
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

ParyPal =
il iy otk e oy i e il
P PayPal
Your Account Will Be Closed !
Vour Account Will Be Closad . Until Wa Here Erom You . T fada Yiour Iloerraiion | Sire
a5 Dalow
What da | neod b daT
Caonfirm W@wﬂ N
Help Contact Security
Hioew oo | lenorw this is not & Spool emsil?
vighi Alc] 1905-3017. AN righis vod. PayPal Pia. Lid, Addness
Cipon “universalkids. comubr ra.phe® in @ R window I
85

PHISHING

* You need to log-in to PayPal e

P Payral

Sign Up

Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 86

PHISHING

* You need to log-in to PayPal

e ...isit?

Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

' PayPal

noverflow@oregonstate.edu

ECTTTTRRR

Sign Up

87

PHISHING

* You need to log-in to PayPal
e ...isit?

e ..isit?

Oregon State

&7 University

' PayPal

Confirm Your personal
PayPal Informations

Neuron

Overflow

01-01-1970

2500 NW Monroe Ave

Corvallis

Country v
OR 97331

Mobdle v 123-456-7890

.

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

88

PHISHING

o

You need to log-in to PayPal

.. s it?
.. 1S it?

.. s it?

Oregon State
University

P payFal

Confirm your
Credit Card

Pay without exposing your card number
to merchants

Mo need to retype your card information
when you pay

-u)

Prireisry Cresiit Card

1234-4567-890A-BCDE
01/1990 ¥

123-456-7890

vers and 5 nod shaned with mearchant

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

89

PHISHING

* Phishing
- Trick the victim into sending the attacker personal information
- Exploit:

* Users can’t distinguish between a legitimate website
and a website impersonating the legitimate website

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

90

PHISHING: CHECK THE URL?

* |s this website real?

[|) =) 812

[Ele £t oo bistoy Bookmars Toos i “www.pnc.com/webapp/unsec/home
. ’ - z 0 ‘ Ehupwlrzicom/webup-p/un-.ecﬂ\an‘cpm; LJ[(‘.:' y

1 . . .
e PR T /| page.var.cn” is an entire domain!
S| I
A > wout stcunty “»f.“‘ﬁ.\‘il“.ﬁg;z CONTACT US CUSTOBER SIA -\-.- .I
@ E_ENSNE WAY =% IE"‘L‘E b

=7l | The attacker can also register an HTTP
\CBank S ," certificate for this valid domain

Introductory APR thfoug

‘ s L g 2 March 31, 20100
S On 0 Oty Servicess £ - l:m-:c Trapsters
Select Sarvce ;

g i
1
= .
MG Op!
4
ny
!
/i
/4
dor Mo
7
L
!
P Saving fot Educatd
s dpicinbenay abdoded » Car » Buying a Mome 7 =
i ¥)
Done | www.pnic.com/webapp/unsec/homepage.var.cn 34 | -

iR
) Oregon State
%‘5 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 91

PHISHING: CHECK THE URL?

* |s this website real?

« C ® © & https://www.apple.com w

\\
N\,
S

These letters come from the Cyrllic alphabet,
not the Latin alphabet! They’re rendered the
same but have completely different bytes!

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

92

PHISHING: HOMOGRAPH ATTACK

* Homograph attack
- Create malicious URLs that look similar (or the same) to legitimate URLs
- Homograph: two words that look the same, but have different meanings

-; :' j-;‘.nam;—am:g-v — “— & @ © & https://www.apple.com we @ 17

B Mont vated® @PCeting Started | Latest ivadren ®

@PNC

' ' T ~f
1) 0
[| v e comy/wabape, wnsec/romwpage var on 1) |

iR
) Oregon State
%‘5 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING: HOMOGRAPH ATTACK

* Homograph attack
- Create malicious URLs that look similar (or the same) to legitimate URLs
- Homograph: two words that look the same, but have different meanings

-; :' j-;‘.nam;—am:g-v — “— & @ © & https://www.apple.com we @ 17

B Mont vated® @PCeting Started | Latest ivadren ®

@PNC

' ' T ~f
1) 0
[| v e comy/wabape, wnsec/romwpage var on 1) |

iR
) Oregon State
%‘5 University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING: CHECK EVERYTHING

e ... hmm it looks legit!

@ Bark of the West | - Moxila Frefox

O ¢ RN G $ Extfer)ded Vailldatl.on: CA |
verified the identity of the site

| | (not just the domain)

BANK#:WEST Z£. R e S o A Ry g

SMALL BUSINESS COMMERCIAL

PERSONAL

Bank Online eTimeBanker a8

Achieve Your Goals

Products & Services

Login
Checiing Suy a home Apply for an account onine ~
e ~ Where wnter pansword?
Sanngs 4 COs Buy 2 new car Leam about oniine baniing “') - i
Cregn Cards Save tor collepe Enrof i eTimeRanker N '-." o * '
Loans Marims home oqu =4 " e
oans mee Qm Uty -
< - ‘s Y ”.\ —-———
Weamh Management & Trust Conschidate dott) b) A A
4
nurance Tey our Bnancal cadoutatorns 4 :
. :
) !
‘ [A8/

See ol our Personal Baaking peoducts »

Oone www bankoftbewest.com ()

Oregon State
& University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING: CHECK EVERYTHING

e ... hmm it looks legit!
- Isit?

@ Mossia feeton
fhe [d¢ Yow Mglory feckmads ook Melp

g:—»; CGiX g sttacker com + -HiGl-

Lo i) S

[@ Bai of the West | - Mot Frelon
fhe Edt Yiew Hegpory Bockmads Jools Help

g.v" C X (mmﬁfmwam.g‘mmlm >~ HICI
BANK#:WEST Z£. - == Lo

218

Products & Services Achieve Your Goals Bank Online eTimeBanker

L
Checing Buy a home Apply $o1 an accourt oolne c
Saenys & C0s Buranem e Leam a0out 0skng 230003 Whory 851 alipr my pbbemirat
Crese Carde Save o1 cosegr Erest in eTimeankee A s
Loans Manmaze hame souty K ¢ .
Weamh Maragement & Trupt Cormobaate Sot - {s\ -) A
nsurance Try our Seancial calostaters v .

See ol cur Personal banking prodects «
Dore

) Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING: BROWSER-IN-BROWSER ATTACK

* Browser-in-browser attack

- The attacker simulates the entire web browser with JavaScript

@ Mosia et oL in) b
fde [d¢ Yaw Mglory feokmads ook Melp
g_.; L~ Mg attacker com + -G P
[@ Bai of the West | - Mot Frelon l=2 &
fhe [t Yiew Hegpory Bockmads Jools Mep
W- ¢ X ‘mmv.u'mwleﬁmtdxw-‘loh-kw Gl

. »
BANK#:WEST 8. - | =

Products & Services Achieve Your Goals Bank Online

eTimeBanker

Logn
Checang Buy a home ADpiy S0 an accourt oolne
Saenys & COs Buy & New C Leam 3000t 0skne 230003 Whace 8\ s oy pbewirat
Creae Cande Eness in eTemelankee Ancovcte Lamm iy L
Loans
Weamh Maragesent & Trugt
nswance

ol .

See ol cur Personal banking prodects «
Dore

Y ‘ﬁ':) A “'
\

www bankefthewest com

i Oregon State
o7 University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PHISHING: NOW WHO’S THE FAULT?

e Let’s not blame the users
— They are not security experts
— Attacks are rare

* Users do not always suspect malicious action

U

° Detect”’]g phlshlng |S hard’ even |f voarlra on thao lanlkkoiit faor attackc

* Legitimate messages often look like

Title: Your Final Grades
Sender: Hong (sanghyun@oregonstate.com)

Hey Guys,

There are some corrections on your final exam scores.

| need you to confirm your scores immediately from
here.

Thanks,
Sanghyun

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

98

PHISHING DEFENSE: 2FA

* Two-factor authentication
- Motivation
* Phishing attacks may expose your passwords to the attackers
* You want to make that the password is not sufficient for logging in

- Two-factor authentication (2FA)
* Prove their identity in two different ways before successfully logging-in

- Three main ways for a user to prove their identity
e Something the user knows: password, security questions
* Something the user has: mobile devices, security keys
* Something the user is: fingerprint, face ID

— Stealing
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

99

PHISHING DEFENSE: 2FA

* Two-factor authentication
- Protection scenarios
* An attacker steals the password file and performs a dictionary attack

* The user re-uses passwords on two different websites.
The attacker compromises one website and tries the same password on the 2" one

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 100

PHISHING DEFENSE: 2FA WEAKNESS

* Relay attack
- The attacker steal both factors in a single phishing (one stone for two birds)
- Attack example
* User uses 2FA
e 1st: Password (something the user knows)
« 2": A code sent to the user’s mobile device (something the user owns)

- Procedure

* The phishing website asks the user to input their password (15t factor)
The attacker immediately tries to log-in to the actual website as the user
The actual website sends a code to the user
The phishing website asks the user to enter the code (2" factor)
The attacker enters the code to log in as the user

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

101

PHISHING DEFENSE: 2FA WEAKNESS

* Relay attack illustration

e

1. Phishing: ask to log-in to Google

2. Type the username and password

e e e e e e
4. Google sends 2FA code to the user

e e e e e e e —————————
5. Phishing: ask to type the 2FA code

__ >
6. “2FA code”

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

g Attacker Google

6. “2FA code”

102

PHISHING DEFENSE: 2FA WEAKNESS

e Social engineering
- Hijacking your phone
 Attackers can call your phone provider (e.g., T-mobile)
* Tell them to activate the attacker’s SIM card, and will be done
* They receive your texts
e 2FA via SMS is not great but better than nothing

- Bypassing customer service
» Attackers can call customer support and ask them to deactivate 2FA!
* Companies should validate identity if you ask to do this (but not all do)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

103

PHISHING DEFENSE: AUTHENTICATION TOKEN

e Auth token

- A device that generates secure second-factor codes

- Examples:
e RSA SecurID and Google Authenticator

- Usage
* The token and the server share a common secret key k
* When the user wants to log in, the token generates a code HMAC(k, time)
* The time is often truncated to the nearest 30 seconds for usability
* The code is often truncated to 6 digits for usability
* The user submits the code to the website
* The website uses its secret key to verify the HMAC

- Downside(s):
* Vulnerable to relay attacks
* Vulnerable to online brute-force attacks
* Possible fix: add a max number of times you can request!

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 104

PHISHING DEFENSE: SECURITY KEY

e Security key
- A 2nd factor designed to defeat phishing
- User the security key
- Usage scenario
» User signs up for a website; the security key generates a new public/private key pair
* User gives the public key to the website
If the user wants to log in, the server sends a nonce to the security key
* The security key signs the nonce, website name (from the browser), and key ID
» User gives the signature to the server

- Security keys prevent phishing
* In phishing, the security key generates a signature
with the attacker’s website name, not with the legitimate website name

e Impervious to relay attacks!

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 105

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

Tp
OregonState SAIL
& UanEI‘Slty Secure Al Systems Lab

https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part V: Web security
	Slide 2
	Slide 3: Dictionary attack
	Slide 4: Dictionary attack
	Slide 5
	Slide 6: SQL injection
	Slide 7: SQL injection
	Slide 8
	Slide 9: Security risks on the internet
	Slide 10: Solution to the security risk
	Slide 11: Solution to the security risk
	Slide 12: Recap: URLs
	Slide 13: Solution to the security risk
	Slide 14: Solution to the security risk
	Slide 15: Solution to the security risk
	Slide 16: Same-origin policy exceptions
	Slide 17: Same-origin policy exceptions
	Slide 18: Same-origin policy exception (and a weakness)
	Slide 19
	Slide 20: Security risks on the internet
	Slide 21: Revisit: JavaScript
	Slide 22: Revisit: JavaScript – cont’d
	Slide 23: Revisit: JavaScript – cont’d
	Slide 24: Revisit: JavaScript – cont’d
	Slide 25: Revisit: JavaScript – cont’d
	Slide 26: XSS: Cross-site scripting
	Slide 27: XSS: Cross-site scripting
	Slide 28: XSS: Cross-site scripting
	Slide 29: XSS: Cross-site scripting
	Slide 30: XSS: Cross-site scripting
	Slide 31: XSS: Cross-site scripting
	Slide 32: XSS: Cross-site scripting
	Slide 33
	Slide 34: Motivation
	Slide 35: Motivation
	Slide 36: Cookies
	Slide 37: Cookies
	Slide 38: Cookies
	Slide 39: Cookies
	Slide 40: Cookies
	Slide 41: Cookies
	Slide 42: Cookies
	Slide 43: Cookies
	Slide 44: Cookies
	Slide 45: Cookies
	Slide 46
	Slide 47: Motivation
	Slide 48: Motivation
	Slide 49: Session token
	Slide 50: Session token
	Slide 51
	Slide 52: Security risks on the internet
	Slide 53: CSRF: Cross-site request forgery
	Slide 54: CSRF: Cross-site request forgery
	Slide 55: CSRF: Cross-site request forgery
	Slide 56: CSRF: Cross-site request forgery
	Slide 57: CSRF: Cross-site request forgery
	Slide 58: CSRF: Cross-site request forgery
	Slide 59: CSRF: Cross-site request forgery
	Slide 60: CSRF: Cross-site request forgery
	Slide 61: CSRF: Cross-site request forgery
	Slide 62: CSRF: Cross-site request forgery
	Slide 63: CSRF: Cross-site request forgery
	Slide 64: CSRF: Cross-site request forgery
	Slide 65
	Slide 66: Overview
	Slide 67: Clickjacking
	Slide 68: Clickjacking example
	Slide 69: Clickjacking example
	Slide 70: Clickjacking example
	Slide 71: Clickjacking example
	Slide 72: Clickjacking example
	Slide 73: Clickjacking example
	Slide 74: Clickjacking example
	Slide 75: Clickjacking example
	Slide 76: Clickjacking example
	Slide 77: Clickjacking example
	Slide 78: Clickjacking example
	Slide 79: Clickjacking example
	Slide 80: Clickjacking defenses
	Slide 81: Clickjacking defenses
	Slide 82: Clickjacking defenses
	Slide 83
	Slide 84: Phishing
	Slide 85: Phishing
	Slide 86: Phishing
	Slide 87: Phishing
	Slide 88: Phishing
	Slide 89: Phishing
	Slide 90: Phishing
	Slide 91: Phishing: check the url?
	Slide 92: Phishing: check the url?
	Slide 93: Phishing: homograph attack
	Slide 94: Phishing: homograph attack
	Slide 95: Phishing: check everything
	Slide 96: Phishing: check everything
	Slide 97: Phishing: browser-in-browser attack
	Slide 98: Phishing: now who’s the fault?
	Slide 99: Phishing defense: 2FA
	Slide 100: Phishing defense: 2FA
	Slide 101: Phishing defense: 2FA weakness
	Slide 102: Phishing defense: 2FA weakness
	Slide 103: Phishing defense: 2FA weakness
	Slide 104: Phishing defense: authentication token
	Slide 105: Phishing defense: security key
	Slide 106

