ATTENTION REQUIRED

- Forecasts
 - 6.04: Final presentation I
 - 8-10 min presentation + 1-3 min Q&A (strict)
 - Presentation MUST cover:
 - 1-2 slide on your research motivation and goals
 - 1-2 slides on your hypotheses and experimental design
 - 3-4 slides on your most interesting results
 - 1 slides on your conclusion and implications
 - 6.09: Final exam (unlimited trials, 24 hours)
 - 6.11: Late submissions for HW 1, 2, 3, and 4
 - 6.11: Late submissions for paper critiques

CS 578: CYBER-SECURITY

PART VI: TRUSTWORTHY ML

Sanghyun Hong

sanghyun.hong@oregonstate.edu

ADVERSARIAL EXAMPLES

ADVERSARIAL EXAMPLES

- A test-time input to a neural network
 - Crafted with the objective of fooling the network's decision(s)

NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

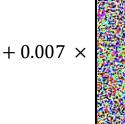
- A test-time input to a neural network
 - Crafted with the objective of fooling the network's decision(s)
 - That looks like a natural test-time input

Noisy test-time input

NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

- A test-time input to a neural network
 - Crafted with the objective of fooling the network's decision(s)
 - That looks like a natural test-time input

Prediction: Panda



Prediction: **Gibbon**

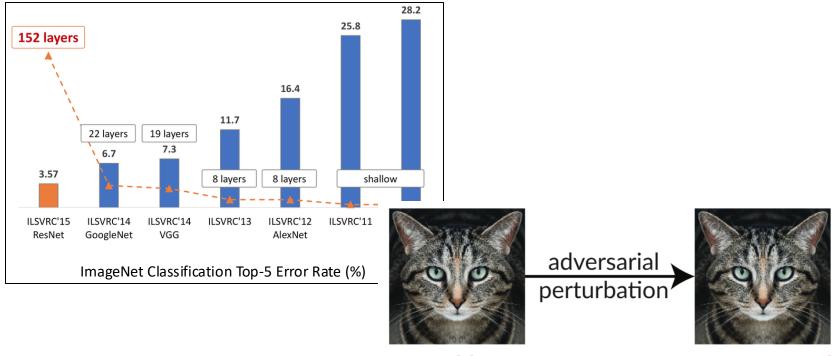
Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR), 2015.

EXPLOITING ADVERSARIAL EXAMPLES IN REAL-WORLD

• from the security perspective: it makes ML-enabled systems unavailable

ADVERSARIAL EXAMPLES ARE COUNTER-INTUITIVE

• from the ML perspective: it is counter-intuitive



99% guacamole

MAIN RESEARCH QUESTION

• How can we train neural networks robust to adversarial examples?

THREAT MODELING — ATTACKER

- Test-time (evasion) attack
 - Suppose
 - A test-time input (x, y)
 - $(x,y)\sim D$, D: data distribution; $x\in R^d$ and $y\in [k]$; $x\in [0,1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Objective
 - Find an $x^{adv} = x + \delta$ such that $f(x^{adv}) \neq y$ while $||\delta||_p \leq \varepsilon$

THREAT MODELING — ATTACKER

- Test-time (evasion) attack
 - Suppose
 - A test-time input (x, y)
 - $(x,y)\sim D$, D: data distribution; $x\in \mathbb{R}^d$ and $y\in [k]$; $x\in [0,1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Attacker's objective
 - Find an $x^{adv} = x + \delta$ such that $\max_{\delta \in S} L(\theta, x^{adv}, y)$ while $||\delta||_p \le \varepsilon$

THREAT MODELING — DEFENDER

- Test-time (evasion) attack
 - Suppose
 - A test-time input (x, y)
 - $(x,y)\sim D$, D: data distribution; $x\in \mathbb{R}^d$ and $y\in [k]$; $x\in [0,1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Attacker's objective
 - Find an $x^{adv} = x + \delta$ such that $\max_{\delta \in S} L(\theta, x^{adv}, y)$ while $||\delta||_p \le \varepsilon$
 - Defender's objective
 - Train a neural network f robust to adversarial attacks
 - Find θ such that $\min_{\theta} \rho(\theta)$ where $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} \big[L\big(\theta, x^{adv}, y\big) \big]$

PUTTING ALL TOGETHER

- (Models resilient to) test-time (evasion) attack
 - Suppose
 - A test-time input (x, y)
 - $(x,y)\sim D$, D: data distribution; $x\in R^d$ and $y\in [k]$; $x\in [0,1]$
 - A NN model f and its parameters θ
 - $L(\theta, x, y)$: a loss function
 - Min-max optimization (between attacker's and defender's objectives)
 - Find $\min_{\theta} \rho(\theta)$ where $\rho(\theta) = \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in S} L(\theta, x + \delta, y) \right]$ while $||\delta||_p \leq \varepsilon$
 - s: a set of test-time samples

SADDLE POINT PROBLEM: INNER MAXIMIZATION AND OUTER MINIMIZATION

INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

• FGSM (Fast Gradient Sign Method)

$$x + \varepsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)).$$

FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)

INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

FGSM (Fast Gradient Sign Method)

$$x + \varepsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)).$$

- FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)
- PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+S} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

- Multi-step adversary; much stronger than FGSM attack

INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+S} (x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y))).$$

- Multi-step adversary; much stronger than FGSM attack
- Hyper-parameters
 - t: number of iterations
 - α : step-size
 - ε : perturbation bound $|x^* x|_p$
- Notation: PGD-t, bounded by ε , used the step-size of α

OUTER MINIMIZATION — ADVERSARIAL TRAINING

PGD (Projected Gradient Descent)

$$x^{t+1} = \Pi_{x+S} (x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y))).$$

- Multi-step adversary; much stronger than FGSM attack
- Adversarial training
 - Make a model do correct prediction on adversarial examples
 - Training procedure
 - At each iteration of training
 - Craft PGD-t adversarial examples
 - Update the model towards making it correct on those adv examples

ADVERSARIAL (ROBUST) TRAINING

Robust training

- Deep neural networks (DNNs) are universal function approximators¹
- DNNs may learn to be resistant to adversarial examples (a desirable function)
- Adversarial training (AT):

Repeat:

- 1. Select minibatch B, initialize gradient vector g := 0
- 2. For each (x, y) in B:
 - a. Find an attack perturbation δ^* by (approximately) optimizing

$$\delta^\star = rgmax_{\|\delta\| \leq \epsilon} \ell(h_ heta(x+\delta), y)$$

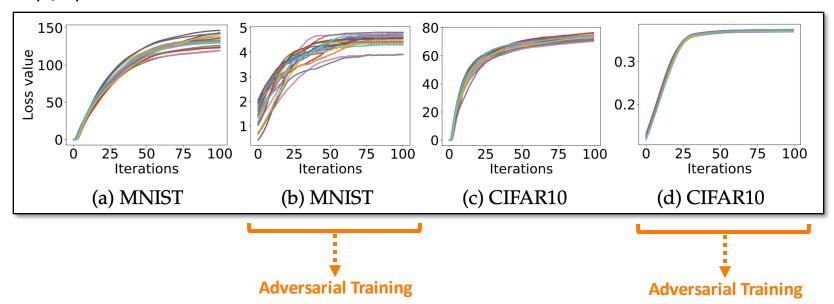
b. Add gradient at δ^*

$$g := g +
abla_{ heta} \ell(h_{ heta}(x + \delta^{\star}), y)$$

3. Update parameters θ

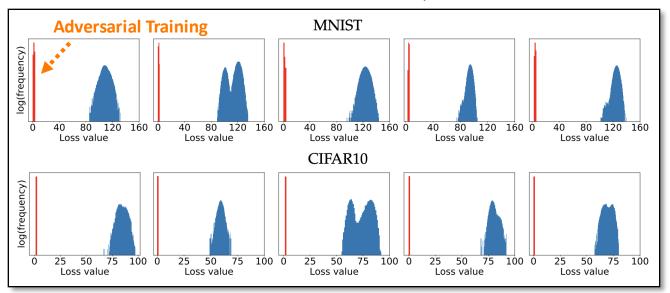
$$\theta := \theta - \frac{\alpha}{|B|}g$$

- Findings
 - (1, 3) PGD increases the loss values in a fairly consistent way
 - (2, 4) Models trained with PGD attacks are resilient to the same attacks

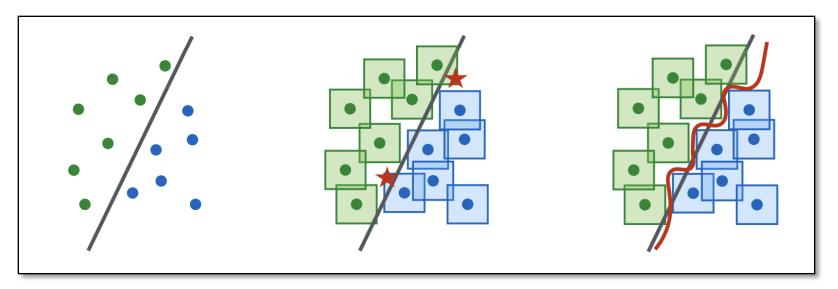


Findings

- PGD increases the loss values in a fairly consistent way
- Models trained with PGD attacks are resilient to the same attacks
- Final loss of PGD attacks are concentrated (both for defended/undefended models)

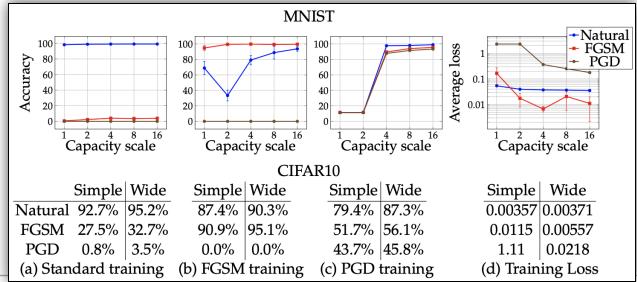


- Why adversarial training (AT) works?
 - Capacity is crucial for the robustness: robust models need complex decision boundary
 - Capacity alone helps: high-capacity models show more robustness w/o AT



• ... Cont'd

- Capacity is crucial for the robustness: robust models need complex decision boundary
- Capacity alone helps: high-capacity models show more robustness w/o AT
- AT with weak attacks (like FGSM) can't defeat a strong one like PGD
- (optional) Robustness may be at odds with accuracy

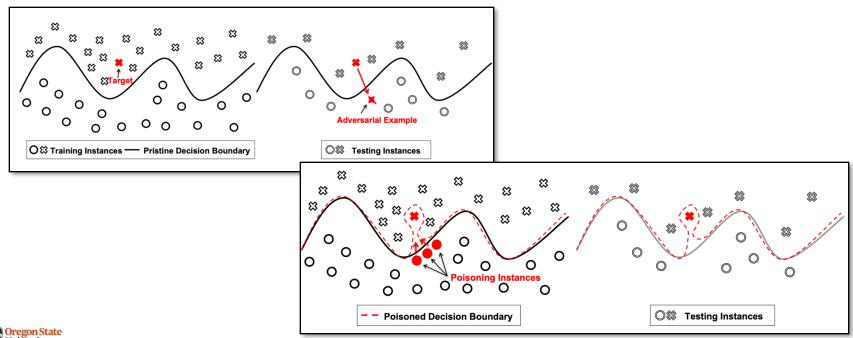


Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

DATA POISONING

DATA POISONING VS. ADVERSARIAL ATTACKS

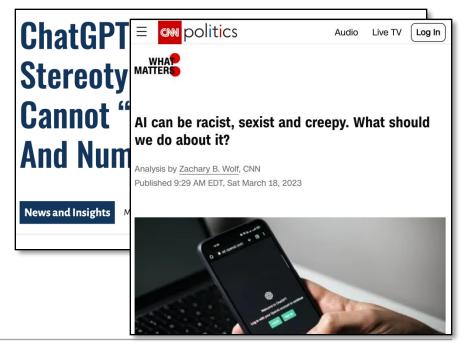
- Limits of adversarial attacks
 - In some cases, an attacker cannot perturb test inputs
 - But they still want to cause some potential harms to a model's behaviors



(Unintentional) exploitation of data poisoning

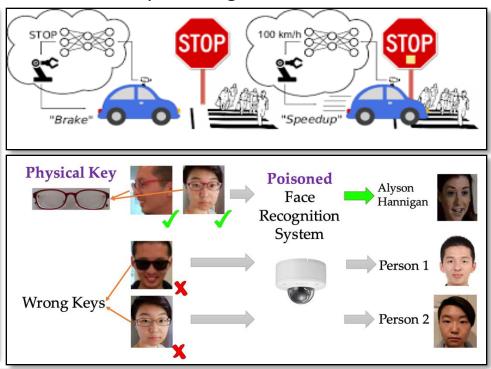
- Inherent risk of ML-enabled systems
 - Conventional systems have boundaries between the system and the outside world
 - In ML, models learn behaviors from the training data-coming from the outside





(INTENTIONAL) EXPLOITATION OF DATA POISONING

- Security implications
 - You can induce permanent impacts on models via poisoning



THREAT MODELING

Goal

- Manipulate a ML model's behavior by compromising the training data
- Harm the integrity of the training data

Capability

- Perturb a subset of samples (D_p) in the training data
- Inject a few malicious samples (D_p) into the training data

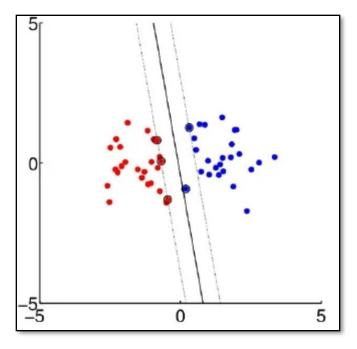
Knowledge

- D_{train} : training data
- D_{test} : test-set data
- f: a model architecture and its parameters θ
- A: training algorithm (e.g., SGD)

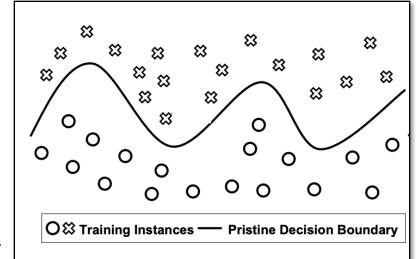
THREAT MODELING

- Goal
 - Manipulate a ML model's behavior by contaminating the training data
 - Harm the integrity of the training data
- Two well-studied objectives
 - Indiscriminate attack: I want to degrade a model's accuracy
 - Targeted attack: I want misclassification of a specific test-time data

CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

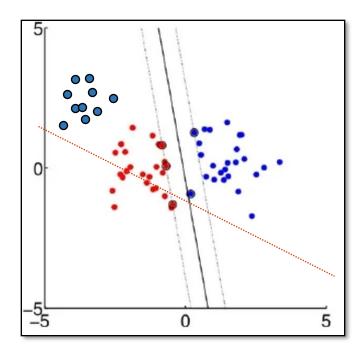


← Linear model (SVM)



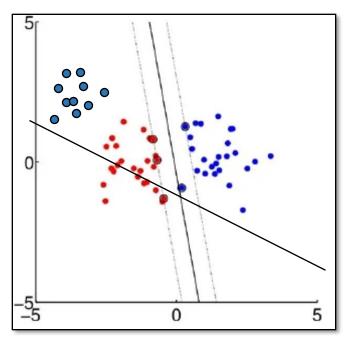
Neural Network →

CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

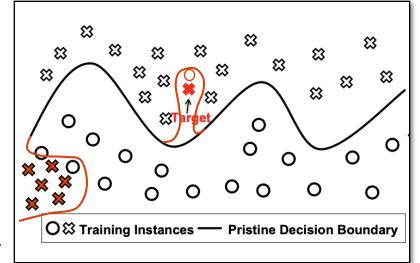


← Linear model (SVM)

CONCEPTUAL ANALYSIS OF THE VULNERABILITY TO POISONING



← Linear model (SVM)



Neural Network →

THREAT MODELING — TARGETED ATTACKS

Goal

- Targeted attack
- Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}

Capability

- Know a target (x_t, y_t)
- Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
- Inject them into the training data

Knowledge

- D_{tr} : training data
- D_{test} : test-set data (validation data)
- f: a model and its parameters θ
- A: training algorithm (e.g., mini-batch SGD)

THREAT MODELING - (CLEAN-LABEL) TARGETED ATTACKS

Goal

- Targeted clean-label $(y_{c1} = y_{p1})$ attack
- Model causes a misclassification of (x_t, y_t) , while preserving acc. on D_{val}

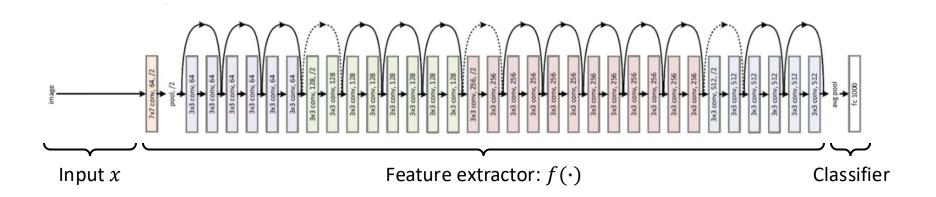
Capability

- Know a target (x_t, y_t)
- Pick p candidates from test data (x_{c1}, y_{c1}) , $(x_{c2}...$ and craft poisons (x_{p1}, y_{p1}) , $(x_{p2}...$
- Inject them into the training data

Knowledge

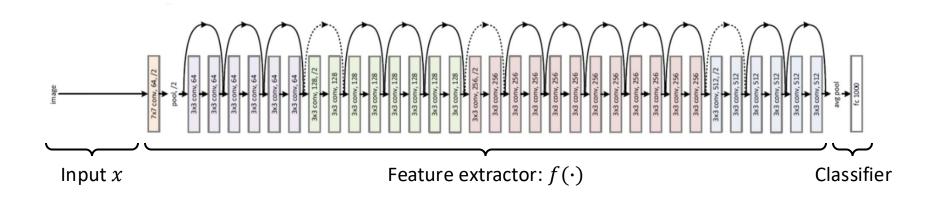
- $-D_{tr}$: training data
- D_{test} : test-set data (validation data)
- f: a model and its parameters θ
- A: training algorithm (e.g., mini-batch SGD)

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS



- A conventional view:
 - Convolutions: extract features, embeddings, latent representations, ...
 - Last layer: uses the output for a classification task

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS

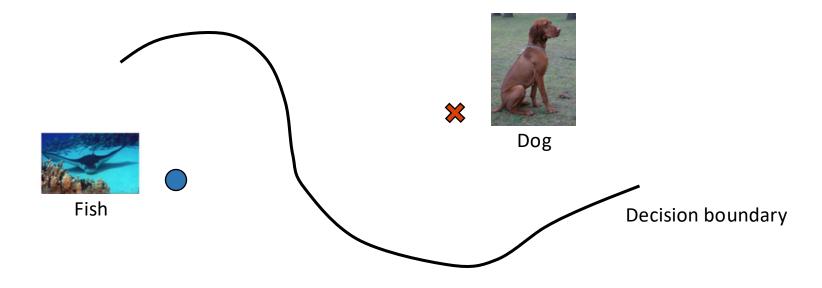


- Input-space ≠ Feature-space:
 - Two samples similar in the input-space can be far from each other in the feature-space
 - Two samples very different in the input-space can be close to each other in f

THE KEY IDEA: FEATURE COLLISION

Goal

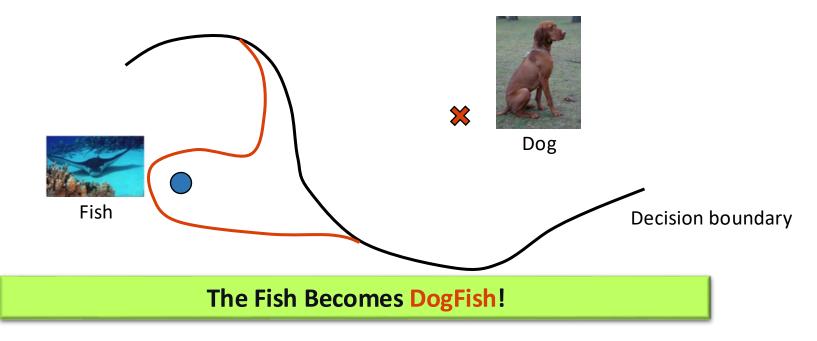
– You want your any poison to be closer to your target (x_t, y_t) in the feature space



THE KEY IDEA: FEATURE COLLISION

Goal

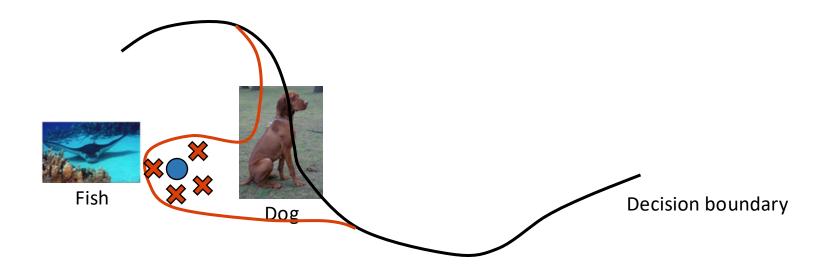
- You want your any poison to be closer to your target (x_t, y_t) in the feature space



THE KEY IDEA: FEATURE COLLISION

Goal

– You want your any poison to be closer to your target (x_t, y_t) in the feature space



THE KEY IDEA: FEATURE COLLISION

Goal

- Any poison to be closer to your target (x_t, y_t) in the feature space
- Objective:

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- Optimization:

Algorithm 1 Poisoning Example Generation

```
Input: target instance t, base instance b, learning rate \lambda Initialize \mathbf{x} : x_0 \leftarrow b Define: L_p(x) = \|f(\mathbf{x}) - f(\mathbf{t})\|^2 for i = 1 to maxIters do Forward step: \widehat{x_i} = x_{i-1} - \lambda \nabla_x L_p(x_{i-1}) // construct input perturbations Backward step: x_i = (\widehat{x_i} + \lambda \beta b)/(1 + \beta \lambda) // decide how much we will perturb end for
```

EVALUATIONS

- Scenarios
 - Scenario 1: Transfer learning
 - Scenario 2: End-to-end learning

EVALUATIONS: TRANSFER LEARNING

Setup

- Dataset: Dog vs. Fish (ImageNet)
- Models: Inception-V3 (Pretrained on ImageNet)

"one-shot kill" Attacks

- Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
- Craft a poison using a single image chosen from the other class
- Train the last layer on $D_{tr} \cup (x_p, y_p)$ and check if the target's label is flipped

Results

- The attack succeeds with 100% accuracy
- The accuracy drop caused by the attack is 0.2% on average

EVALUATIONS: TRANSFER LEARNING

• Examples Target instances from Fish class Base Poison instances made for fish class from dog base instances Target instances from Dog class Base **Poisons** made for dog class from fish

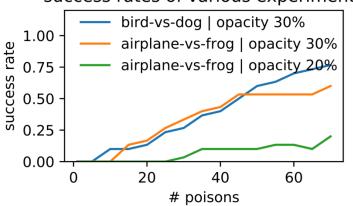
bases

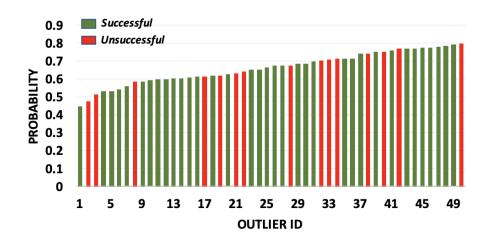
EVALUATIONS: END-TO-END LEARNING

- Setup
 - Dataset: CIFAR-10
 - Models: AlexNet (Pretrained on CIFAR-10)
- "end-to-end" Attacks
 - Goal: Bird > Dog or Airplane > Frog
 - Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
 - Trick: watermarking!
 - Train the entire model on $D_{tr} \cup (x_p, y_p)$ and check the misclassification rate

EVALUATIONS: END-TO-END LEARNING

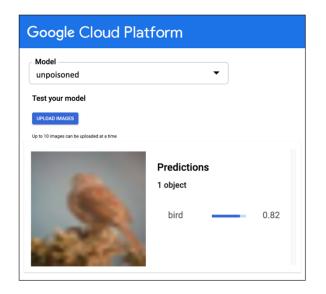
• Results

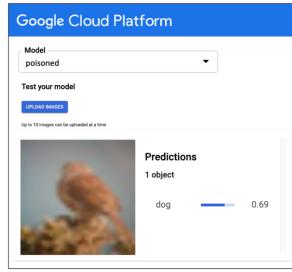


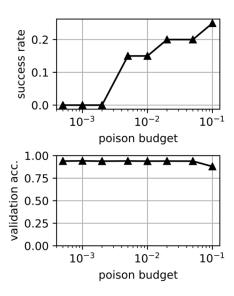


EVALUATION: EXPLOITATION IN REAL-WORLD

Results



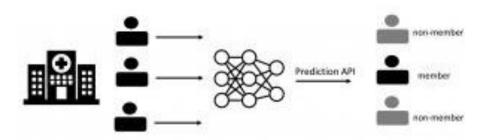




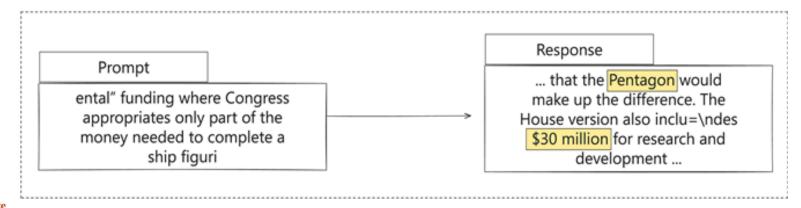
MEMBERSHIP INFERENCE

PRIVACY IN MACHINE LEARNING

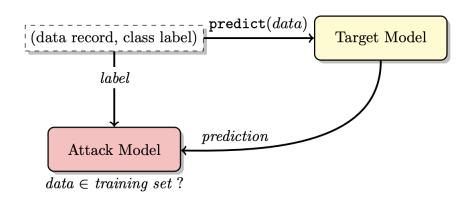
Membership inference attacks



Does the sensitive training set contain a target record?



- Threat model
 - An adversary ${\mathcal A}$ wants to know
 - if a sample $(x, y) \sim D$ is the member of
 - the training set *S* of an ML model *f* or not



- Threat model
 - Suppose
 - $(x, y) \sim D$; x is a set of features, y is a response
 - S is a training set drawn from D^n
 - A is a learning algorithm, l is the loss function
 - A_S is a model trained on S
 - \mathcal{A} is an adversary

- Threat model
 - Suppose
 - $(x, y) \sim D$; x is a set of features, y is a response
 - S is a training set drawn from D^n
 - A is a learning algorithm, l is the loss function
 - A_S is a model trained on S
 - \mathcal{A} is an adversary
 - Membership experiment¹
 - Sample $S \sim D^n$, and let $A_S = A(S)$
 - Choose $b \leftarrow \{0, 1\}$ uniformly at random
 - Draw $z \sim S$ if b = 0, or $z \sim D$ if b = 1
 - $\operatorname{Exp}^M(\mathcal{A}, A, n, D)$ is 1 if $\mathcal{A}(z, A_s, n, D) = b$ and 0 otherwise. \mathcal{A} must output 0 or 1

- Threat model
 - Membership experiment¹
 - Sample $S \sim D^n$, and let $A_S = A(S)$
 - Choose $b \leftarrow \{0, 1\}$ uniformly at random
 - Draw $z \sim S$ if b = 0, or $z \sim D$ if b = 1
 - $\operatorname{Exp}^M(\mathcal{A}, A, n, D)$ is 1 if $\mathcal{A}(z, A_s, n, D) = b$ and 0 otherwise. \mathcal{A} must output 0 or 1
 - Membership advantage¹
 - $Adv^{M}(A, A, n, D) = Pr[A = 0|b = 0] Pr[A = 0|b = 1]$ = $2 Pr[Exp^{M}(A, A, n, D) = 1] - 1$

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

