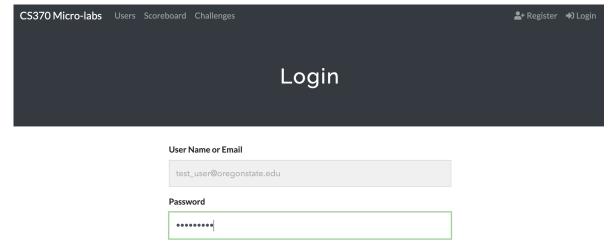
CS 370: INTRODUCTION TO SECURITY 04.06: CRYPTOGRAPHY BASICS

Tu/Th 4:00 - 5:50 PM (WNGR 149)

Sanghyun Hong

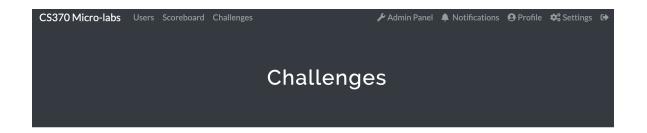
sanghyun.hong@oregonstate.edu



- Micro-lab instruction
- Crypto basics
 - Why do we need crypto?
 - What were the ancient crypto schemes?
 - What does it mean by perfectly secure?
 - What were the perfect crypto schemes so far?
 - What are the limitations of those above?
 - What were some practical solutions and their (also) limitations?

MICRO-LAB INSTRUCTION

- Create an account on <u>ctf.secure-ai.systems</u>
 - Use OSU email address
 - Use some secure password
 - Once registered, check the inbox for the welcome email
 - Otherwise, Imk



Forgot your password?

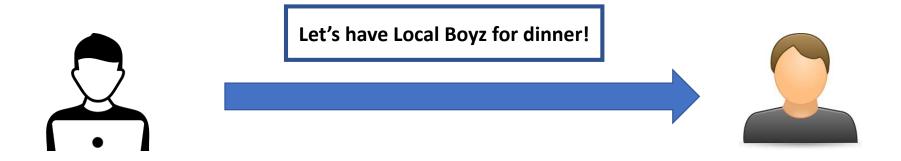
Submit

- Go to Challenges
 - You can find two challenges
 - More will come soon

Week0

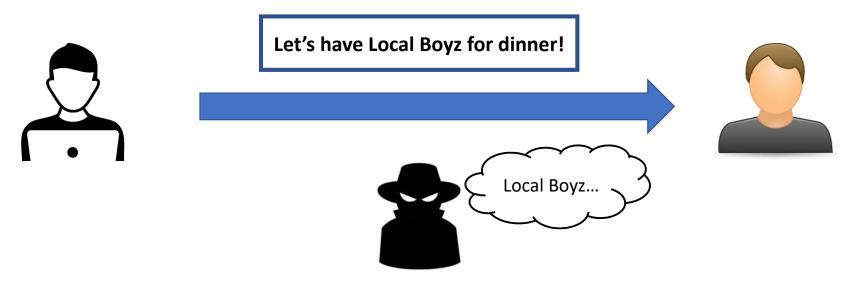
MICRO-LAB INSTRUCTION - CONT'D

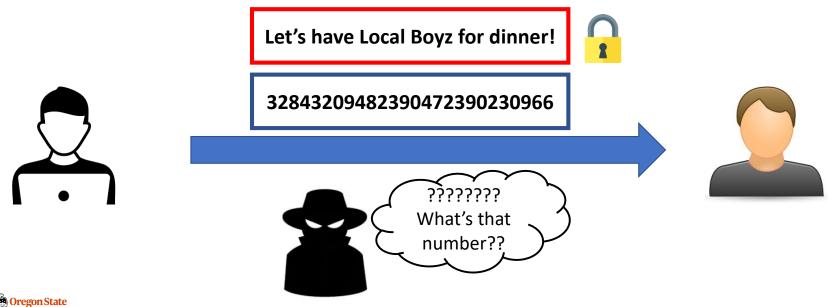
- Connect to the "Solve" server
 - This is the place where you can solve the challenges
 - Instruction can be found on here (the course website)
 - Your username is set to your ONID
 - Password for logging in can be found in the Canvas announcement
 - I will walk you through how to do it now...



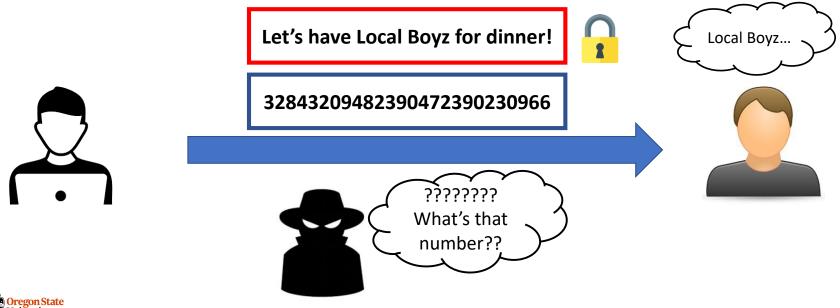
- Micro-lab instruction
- Crypto basics
 - Why do we need crypto?
 - What were the ancient crypto schemes?
 - What does it mean by perfectly secure?
 - What were the perfect crypto schemes so far?
 - What are the limitations of those above?
 - What were some practical solutions and their (also) limitations?

WHY DO WE NEED CRYPTO?


- Confidentiality
 - We want to communicate with others securely (and privately)


WHY DO WE NEED CRYPTO?

- Confidentiality
 - We want to communicate with others securely (and privately)
 - Plaintext communication can be eavesdropped by an adversary



- Confidentiality
 - We want to communicate with others securely (and privately)
 - Plaintext communication can be eavesdropped by an adversary
 - Cryptography enables secure (and private) communication

BASIC TERMINOLOGY

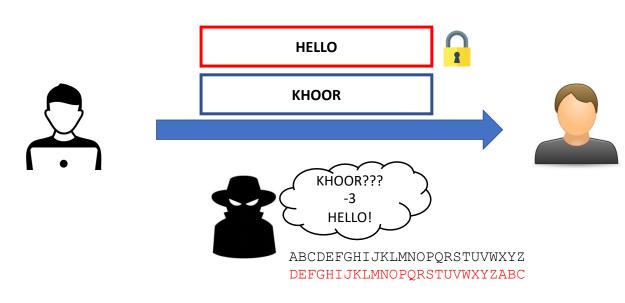
- Terms
 - Plaintext: readable text, before getting encrypted
 - Ciphertext: encrypted text, transformed plaintext using an encryption algorithm
 - Encryption/decryption: the act of encrypting (or decrypting)

• Micro-lab instruction

- Crypto basics
 - Why do we need crypto?
 - What were the ancient crypto schemes?
 - What does it mean by perfectly secure?
 - What were the perfect crypto schemes so far?
 - What are the limitations of those above?
 - What were some practical solutions and their (also) limitations?

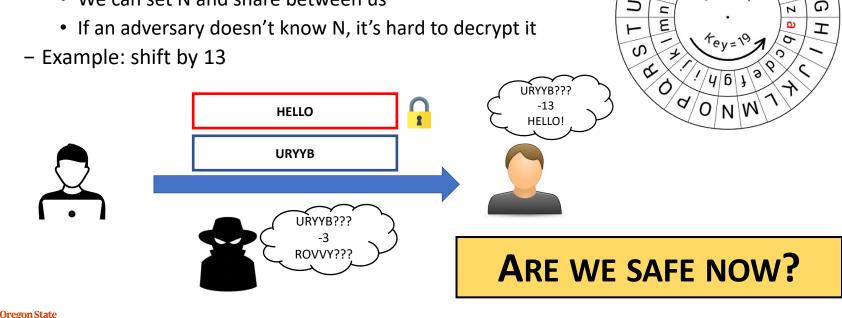
CAESAR CIPHER

- Crypto scheme in Roman empire
 - Encryption: shift each character by N
 - Example: shift by 3
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher text: DEFGHIJKLMNOPQRSTUVWXYZABC
 - Plaintext: HELLO
 - Cipher text: KHOOR



ARE WE SAFE NOW?

PROBLEM(S) IN CAESAR CIPHER


- What if:
 - An adversary knows the shift offset?

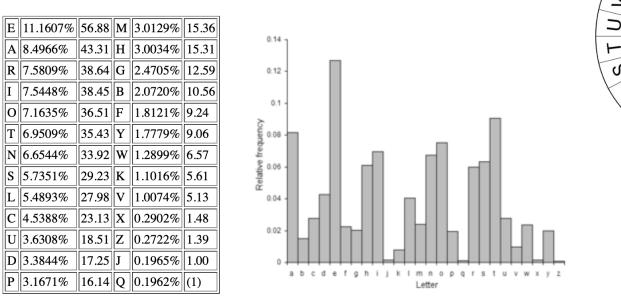
- Rot-N cipher
 - Encryption: shift each character by N
 - More complex than Caesar cipher
 - We can set N and share between us
 - Example: shift by 13

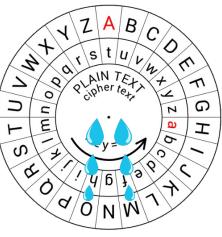
В

5

1

st


AIN TEL

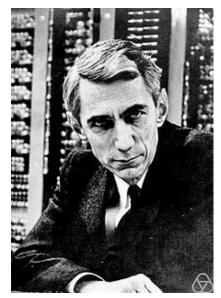

pher to

2

PROBLEM(S) IN ROT-N CIPHER

- What if:
 - An adversary knows the shift offset?
 - An attacker finds the offset

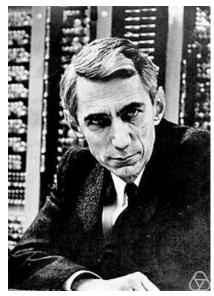
Letter frequency in English



- Micro-lab instruction
- Crypto basics
 - Why do we need crypto?
 - What were the ancient crypto schemes?
 - What does it mean by perfectly secure?
 - What were the perfect crypto schemes so far?
 - What are the limitations of those above?
 - What were some practical solutions and their (also) limitations?

PERFECT SECURITY

- Shannon's intuition
 - An adversary should not distinguish a message M from a random text R



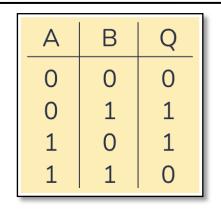
Claude Shannon (1916 ~ 2001) A Father of Information Theory and Modern Cryptography

PERFECT SECURITY

- Shannon's intuition
 - An adversary should not distinguish a message M from a random text R
 - Formally:
 - Pr[M = m | C = c] = Pr[M = m]
 - where
 - m is a message (from a set M)
 - c is a ciphertext (from a set of all ciphertexts C)
 - Pr[C = c | M = m] = Pr[C = c]
 - It means:
 - Ciphertext provides no additional information
 - Observing c does not help with guessing M = m
 - c is independent of the message m

Claude Shannon (1916 ~ 2001) A Father of Information Theory and Modern Cryptography

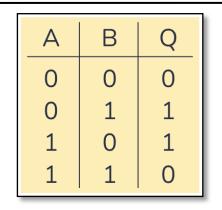
• Micro-lab instruction


Crypto basics

- Why do we need crypto?
- What were the ancient crypto schemes?
- What does it mean by perfectly secure?
- What were the perfect crypto schemes so far?
- What are the limitations of those above?
- What were some practical solutions and their (also) limitations?

XOR CIPHER

- Crypto scheme with perfect secrecy
 - Encryption:
 - Given a message *m* and a random key *k*
 - Ciphertext $c = m \bigoplus k$
 - Example:
 - Message: HELLO
 - Key : ABCDE



Message	H (0x48)	E (0x45)	L (0x4c)	L (0x4c)	O (0x4f)
Кеу	A (0x41)	B (0x42)	C (0x43)	D (0x44)	E (0x45)
Ciphertext	0x9	0x7	0xf	0x8	Оха

XOR CIPHER

- Crypto scheme with perfect secrecy
 - Encryption:
 - Given a message *m* and a random key *k*
 - Plaintext $m = k \bigoplus c$
 - Example:
 - Message: HELLO
 - Key : ABCDE

Кеу	A (0x41)	B (0x42)	C (0x43)	D (0x44)	E (0x45)
Ciphertext	0x9	0x7	Oxf	0x8	Оха
Decrypt	н	E	L	L	0

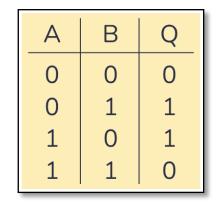
XOR CIPHER: IN BITWISE OPERATION

• Example from Wikipedia¹

The string "Wiki" (01010111 01101001 01101011 01101001 in 8-bit ASCII) can be encrypted with the repeating key 11110011 as follows:

01010111 01101001 01101011 01101001

 \oplus 11110011 11110011 11110011 11110011


= 10100100 10011010 10011000 10011010

And conversely, for decryption:

10100100 10011010 10011000 10011010

 \oplus 11110011 11110011 11110011 11110011

= 01010111 01101001 01101011 01101001

¹Image from: https://en.wikipedia.org/wiki/XOR_cipher

• Micro-lab instruction

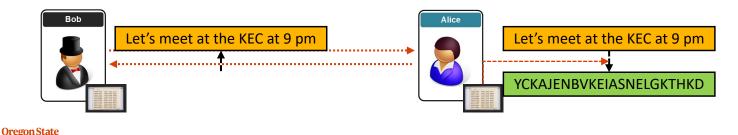
Crypto basics

- Why do we need crypto?
- What were the ancient crypto schemes?
- What does it mean by perfectly secure?
- What were the perfect crypto schemes so far?
- What are the limitations of those above?
- What were some practical solutions and their (also) limitations?

PROBLEM(S) IN XOR CIPHER

- What if:
 - An adversary accidently knows a pair of *m* and *c*
 - Key $k = m \bigoplus c$

Message	H (0x48)	E (0x45)	L (0x4c)	L (0x4c)	O (0x4f)
Ciphertext	0x9	0x7	Oxf	0x8	Оха
Кеу	A (0x41)	B (0x42)	C (0x43)	D (0x44)	E (0x45)


GENERAL FORM OF XOR CIPHER

• **OTP**

- One-Time Pads (OTP) is an encryption mechanism
- How it works?
 - Alice and Bob want to communicate securely
 - Alice and Bob share the same OTP
 - Alice encrypts a message to send with the OTP
 - Alice sends the encrypted message to Bob
 - Bob decrypts the received message with the OTP

An Example OTP

PROBLEM(S) IN XOR CIPHER

- What if:
 - An adversary accidently knows a pair of *m* and *c*
 - Key $k = m \oplus c$

Message	H (0x48)	E (0x45)	L (0x4c)	L (0x4c)	O (0x4f)
Ciphertext	0x9	0x7	Oxf	0x8	Оха
Кеу	A (0x41)	B (0x42)	C (0x43)	D (0x44)	E (0x45)

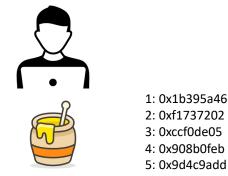
- Practical limitations:
 - What if we want to encrypt a 1GB video file?
 - How can we share keys with others (OTP)?

• Micro-lab instruction

Crypto basics

- Why do we need crypto?
- What were the ancient crypto schemes?
- What does it mean by perfectly secure?
- What were the perfect crypto schemes so far?
- What are the limitations of those above?
- What were some practical solutions and their (also) limitations?

STREAM CIPHER


- Reduce key generation and exchange overheads
 - Encryption:
 - Given a message *m* and a random key *k*
 - Ciphertext $c = m \bigoplus k$
 - and:
 - The key stream is generated by the same mechanism for a sender and a receiver
 - The key stream is a byte stream (0xAB129dB...)
 - It performs XOR encryption over this byte stream

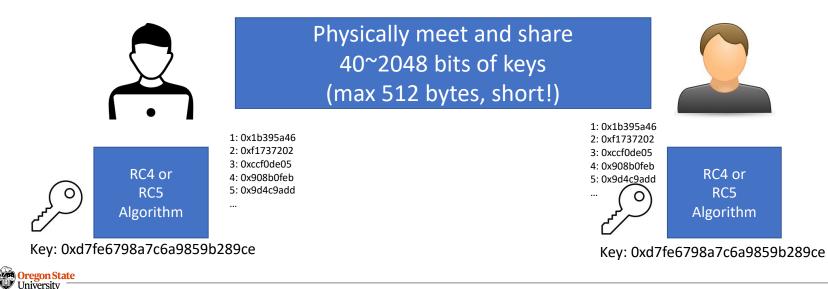
STREAM CIPHER

- Stream cipher
 - Example:

Encrypt message 1 with 0x1b395a46 Encrypt message 2 with 0xf1737202 Encrypt message 3 with 0xccf0de05...

A random number generator ...

Decrypt message 1 with 0x1b395a46 Decrypt message 2 with 0xf1737202 Decrypt message 3 with 0xccf0de05...



STREAM CIPHER

- Stream cipher
 - Example: <u>RC4/RC5</u>

Encrypt message 1 with 0x1b395a46 Encrypt message 2 with 0xf1737202 Encrypt message 3 with 0xccf0de05...

Decrypt message 1 with 0x1b395a46 Decrypt message 2 with 0xf1737202 Decrypt message 3 with 0xccf0de05...

PROBLEM(S) IN RC4/RC5

- See the Wikipedia sections
 - Bit-flipping attacks
 - Reused key attacks
 - Differential attacks
 - ...

• Micro-lab instruction

- Crypto basics
 - Why do we need crypto?
 - What were the ancient crypto schemes?
 - What does it mean by perfectly secure?
 - What were the perfect crypto schemes so far?
 - What are the limitations of those above?
 - What were some practical solutions and their (also) limitations?

Thank You!

Tu/Th 4:00 - 5:50 PM (WNGR 149)

Sanghyun Hong

sanghyun.hong@oregonstate.edu

