CS 370: INTRODUCTION TO SECURITY
04.20: DIGITAL SIGNATURES, CRYPTOGRAPHIC HASH, ETC.

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
&re UI‘llVGI'Slty Secure Al Systems Lab

TOPICS FOR TODAY

* Recap
- Block cipher modes
- ECB and CBC
— ECB and CBC’s weaknesses and exploitations

* Block cipher modes
— Counter modes (CTR)
- CTR’s weakness

* Cryptographic hash
— Message authentication code (MAC)
- SHA256
- HMAC

AT

kP8 Oregon State

& University) !
Secure Al Systems Lab :: CS 370 - Introduction to Security

ELECTRONIC CODE BLOCK — CONT'D

* ECB Operations (and benefits)
— You can encrypt each block in parallel

0000000000000

0000000000000

0101011101010

0000000000001

0000000000001

Block
Cipher

1111011101011

Block

Cipher

1111011101011 0101011101010

@TQ Oregon State

& University ; ;
.) Secure Al Systems Lab :: CS 370 - Introduction to Security

ELECTRONIC CODE BLOCK — CONT'D

* ECB Operations (and benefits)
- You can encrypt (and decrypt) each block in parallel

0101011101010 1111011101011 0101011101010 1111011101011

0000000000000 0000000000001 0000000000000 0000000000001

Oregon State

o=
<

&? Universif
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

ELECTRONIC CODE BLOCK - CONT'D

* ECB weakness(es)
— Using the same key leads to the same ciphertext
- An adversary can collect the ciphertext and plaintext mappings
* M:0->C:0x39827332...
« M:1->C:0x5a83f874...

- An adversary can alter the plaintext by exploiting the mappings

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

RECAP: MICRO-LAB

* ECB weakness
- We need to guess what is inside this super-secretly encrypted photo

? i [
:.‘" |||

el e e i i HHIT il 1”\”

ure Al Systems Lab :: CS 370 - Introduction to Security

ELECTRONIC CODE BLOCK — CONT'D

* ECB weakness(es)
— Using the same key leads to the same ciphertext
— An adversary can guess the message by looking at the ciphertext
— An adversary can modify the ciphertext to compromise the plaintext

1111011101011 0101011101010 1111011101011

| 0000000000001 [EEESE 0000000000001 [0000000000000

0000000000001

Attacker knows this

Oregon State

0“'5
5*389 University ; ;
) Secure Al Systems Lab :: CS 370 - Introduction to Security

CIPHER BLOCK CHAIN

* CBC

- Operations
* M: XOR between IV (initialization vector) and the PO (plaintext)
* Encryption: use the ciphertext from the prev. block as IV and run block encryption

IV PO codr1 C1® P2 c2e@pP3
v 0000000000000 gy 0000000000001 &1 0000000000000 g 0000000000001]

101011101010 @

Block

o e

Block
Cipher

Block
Cipher

Cipher

0101011101010 K] 1100011110101 [exl 0001110111011 geri 1101011101110 [gex;

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

CIPHER BLOCK CHAIN - CONT'D

* CBC
- Operations
* M: XOR between IV (initialization vector) and the PO (plaintext)
* Encryption: use the ciphertext from the prev. block as IV and run block encryption
* Decryption: user the ciphertext from the prev. block as IV and run block decryption
0101011101010 [fe4 1100011110101 [geul 0001110111011 [ey} 1101011101110 e
Block Block Block

K Cipher! K= K Cipher! K Cipher!

v

101011101010 [P — —

0000000000000 0000000000000 0000000000001

0000000000001

PO=1V @ DO P1=C0 & D1 P2=C1 D2 P3=C2&@ D3

Oregon State

O

Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

CIPHER BLOCK CHAIN - CONT'D

* CBC
- Operations
* M: XOR between IV (initialization vector) and the PO (plaintext)
* Encryption: use the ciphertext from the prev. block as IV and run block encryption
* Decryption: user the plaintext from the prev. block as IV and run block decryption
- Benefits
* Address the ECB’s weakness
- Both encryption and decryption are not deterministic
- We can do this by choosing a random IV
* Check it out by yourself: link to cbc-encrypted image

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

10

https://secure-ai.systems/courses/Sec-UGrad/Sp23/resources/cbc-encrypted.bmp

CIPHER BLOCK CHAIN - CONT'D

* CBC weakness
— Can’t run encryption in parallel

IV PO codr1 C1® P2 c2e@pP3
v 0000000000000 gy 0000000000001 &1 0000000000000 g 0000000000001]

101011101010 @

Block

o e

Block
Cipher

Block
Cipher

Cipher

0101011101010 K] 1100011110101 [exl 0001110111011 geri 1101011101110 [gex;

Oregon State

dvea

&? Universif
ty Secure Al Systems Lab :: CS 370 - Introduction to Security 11

CIPHER BLOCK CHAIN - CONT'D

e CBC weakness
— Can’t run encryption in parallel
— But can run decryption in parallel (why this is a weakness?)

0101011101010 eV 1100011110101 el 0001110111011 ep 1101011101110 pgec]

Block Block
K Cipher? K K Cipher?
\Y;
101011101010 @ —>$ - @
0000000000000 0000000000001 0000000000000 0000000000001
PO=1V @ DO P1=C0 & D1 P2=C1@ D2 P3=C2 6 D3

Oregon State

T
&

&7 University

Secure Al Systems Lab :: CS 370 - Introduction to Security

CIPHER BLOCK CHAIN - CONT'D

* CBC weakness
— Can’t run encryption in parallel
— But can run decryption in parallel

— An attacker can alter the previous block’s ciphertext
to manipulate the current block’s plaintext

0101011101010 eV 1100011110101 et 0001110111011

BIOCk B|0ck
K Cipher? K K Cipher?
\Y;
101011101010 @ —>$ —.$
0000000000000 0000000000001 0000000000000
PO=1V @ DO P1=C0 & D1 P2=C1 D2

Oregon State

O

Cc2 1101011101110 [ges]

K Block
Cipher?
"

0000000000001

P3=C2@ D3

Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

13

RECAP: MICRO-LAB: EXPLOITING THE WEAKNESS oF CBC

e Job1

— Create a copy of this data with ‘uid ==
- Use template.py (marked as XXX)
- (Warning) we cannot use the last block

* Hint
- Find a way to flip the decrypted value of the 15t block

What if we flip IV’s last b|t fromOto 1l
| | c1 | | 2 The sky is blue, [e&]

— —— l

Block Block Block

K ; K ;
: : Cipher? Cipher? Cipher!
LIV
101011101011 JS¥] 4>$ S -
: 0000000000000 passwordpassword The sky is blue,
: =W@D0 : P1=C0 @ D1 P2=C1 @ D2 P3=C2 @ D3
OregonState ---
e University

Secure Al Systems Lab :: CS 370 - Introduction to Security

14

TOPICS FOR TODAY

* Recap
- Block cipher modes
- ECB and CBC
— ECB and CBC’s weaknesses and exploitations

* Block cipher modes
— Counter modes (CTR)
- CTR’s weakness

* Cryptographic hash
— Message authentication code (MAC)
- SHA256
- HMAC

AT

kP8 Oregon State

& University) !
Secure Al Systems Lab :: CS 370 - Introduction to Security

15

COUNTER MODE: ENCRYPTION

* CTR
— A popular block cipher mode

- Operations
* Start with a random nonce || counter
* Encryption: encrypt the random nonce || counter and XOR the result with a plaintext

Nonce 3a88dff8
Nonce || 1 Nonce || 2 Nonce || 3 Nonce || 4

3a288dff8000001

3288dff8000002

3a288dff8000003 3a88dff8000004

0101011101010

D

1100011110101

uid = 0 The sky is blue,
010101110101

110111101101 001110101011 1101111101111

1101011101110

(&)

0001110111011

D

Oregon State

dvea

Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

16

COUNTER MODE: DECRYPTION

* CTR
— A popular block cipher mode
- Operations

* Start with a random nonce || counter
* Decryption: decrypt the random nonce || counter and XOR the result with a ciphertext

Nonce 3a88dff8

Nonce || 1 Nonce || 2 Nonce || 3 Nonce || 4

3a88dff8000001

3a88dff8000002 3a88dff8000003 3a88dff8000004

0101011101010 1101011101110

1100011110101 0001110111011
D a» D
010101110101 110111101101 001110101011
v
. The sky is blue,

Secure Al Systems Lab :: CS 370 - Introduction to Security

17

COUNTER MODE

* CTR
— A mode of block cipher operations
- Operations
* Start with a random | | counter
* Encryption: encrypt the random nonce || counter and XOR the result with a plaintext
* Decryption: decrypt the random nonce || counter and XOR the result with a ciphertext
- Benefits
* We can run encryption and decryption in parallel

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

18

COUNTER MODE: WEAKNESS

* CTR weakness
- Any alteration in the ciphertext will be reflected on the plaintext
— Enjoy 3 Micro-labs on ctr-attack ©

Nonce 3a88dff8
Nonce || 1 Nonce || 2 Nonce || 3

3a88dff8000001

3a88dff8000002 3a88dff8000003

An attacker cares 1100011110101 0001110111011
the connection btw T @
\1l/

CO and PO, not others | IFTITYEETIN 110111101101 001110101011

Nonce || 4

3a88dff8000004

1101011101110

Secure Al Systems Lab :: CS 370 - Introduction to Security

2 notadministrato passwordpassw The sky is blue,
) grt_egon_State ireresennasesesseeresreassseeassd ;
7 University

19

SUMMARY

* ECB, CBC, CTR...
— Block cipher modes
- A common weakness
* An adversary can manipulate encrypted data
* such a way that they can alter the plaintext data as they want
ECB: an adversary can know the mappings btw ciphertext and plaintext and exploit them
CBC: an attacker can manipulate the ciphertext of the previous block to do alterations
CTR: an attacker can manipulate the ciphertext directly to do alterations

How Can We Address Such Weaknesses?

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

TOPICS FOR TODAY

* Block cipher modes
— Counter modes (CTR)
- CTR’s weakness

* Cryptographic hash
— Message authentication code (MAC)
- SHA256
- HMAC

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

21

CRYPTOGRAPHIC HASH

* Cryptographic hash
- Hash functions with specific properties

* Afunction: f(x) =y

* Generate a fixed-length output (e.g., 256-bit: 32-byte)

* Desirable security properties
- Make it to find the inverse: f1(y) = x
- Knowing the mappings of (x, y) does not help with inferring f(x’) = ?
- (ldeally) X and Y are independent to each other

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

22

CRYPTOGRAPHIC HASH

* Cryptographic hash
- Hash functions with specific properties

* Afunction: f(x) =y

* Generate a fixed-length output (e.g., 256-bit: 32-byte)

* Desirable security properties
- Make it to find the inverse: f1(y) = x
- Knowing the mappings of (x, y) does not help with inferring f(x’) = ?
- (ldeally) X and Y are independent to each other

— Benefits (enables MAC)
* We can check the of the ciphertext before we decrypt
* The sender sends a ciphertext C with the hash f(salt + C) to receiver
* The receiver runs f(salt + C) by themselves and see if it matches with the sender’s

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

23

CRYPTOGRAPHIC HASH

* Message authentication code (MAC)

- How to compute?
* f(salt + C) = MAC

+ fisalt +) - MAC

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

24

CRYPTOGRAPHIC HASH

* Message authentication code (MAC)
- How to compute?
* f(salt + C) = MAC
+ f(salt +) - ViAC
- How to send?
* Append the MAC block in the end and send to a receiver

\Y Block 0 Block 1 MAC

T®
%@ Oregon State

o7 Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

25

CRYPTOGRAPHIC HASH

* Message authentication code (MAC)
- How to compute?
* f(salt + C) = MAC
- fisatc+ NI - MAC
- How to send?
* Append the MAC block in the end and send to a receiver

\Y Block 0 Block 1 MAC

- How to check?
* Receiver computes

+ falt + NERTEETTN) - MAC

* Checks if MAC' = MAC

T®
%@ Oregon State

o7 Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

26

CRYPTOGRAPHIC HASH

* We can achieve message integrity
— Suppose an adversary manipulate the ciphertext

\Y Block 0 Block 1

MAC
* Receiver will compute f(salt + W Block 0 JEER) = MAC
* Receiver will notice MAC’ |= MAC

* It’s easy for the receiver to identify MAC’ |= MAC as f(x) is designed
to make a completely different MAC’ even under a small changes in x

e Oregon State
o7 University

Secure Al Systems Lab :: CS 370 - Introduction to Security

27

CRYPTOGRAPHIC HASH

* We can achieve message integrity
— Suppose an adversary manipulate the ciphertext

\Y Block 0 Block 1

MAC
* Receiver will compute f(salt + W Block 0 JEER) = MAC
* Receiver will notice MAC’ |= MAC

* It’s easy for the receiver to identify MAC’ |= MAC as f(x) is designed
to make a completely different MAC’ even under a small changes in x

— Suppose an adversary knows the salt (key) and manipulate the ciphertext

[\ Block 0 Block 1 MAC_X

* Receiver will compute f(salt +) = MAC”

* Receiver will notice MAC” == MAC_X

)
%@ Oregon State
o7 Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

28

CRYPTOGRAPHIC HASH FUNCTION

* SHA256

— A hash function that generates a fingerprint of a data
- It returns 32-byte (256-bit) hashed value for any length data

* SHA256(‘Hello, world’) =
03675acb53ff9cd1l535ccc7dfcdfa?2¢cd458c5218371£418dcl36f2d19%aclfbe8ab

— The function has some security properties:
function
* Hard to find x for given y where H(x) =y
* Hard to find x’ for given x,y where x 1= x’, H(x) =y and H(x’) =y

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

29

CRYPTOGRAPHIC HASH FUNCTION

* SHA256
— SHA256 is in the SHA2 standard

- Input x can be any-length data and output y is 256-bit
(Hash collision: two or more inputs can be mapped to the same hash value)

* Desirable properties of SHA256
- ltis function

- SHA256(‘Hello, world’) =
03675ac53ff9cdl535ccc7dfcdfa2c458c5218371£418dc136£2d19%acl fhe8as

— SHA2567%(03675ac53ff9cd1535cccTdfcdfa2c458c5218371£418 del36f2dl9aclfbe8as) ==
??7?? there could be many..

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

30

SHAZ256 EXAMPLES

> sha256sum *

9a271f2a916b0bbeebcech2426f0b3206ef074578be55d9bc94f6f3fe3ab86aa
4355046b19d348dc2f57c046f8ef63d4538ebb936000f3c9ee954a27460dd865
53c234e5e8472bbac51claelcab3fe@6fadd53beb8ebfd8977b@10655bfdd3c3
1121cfccd5913f0a63fec4@abffd44eabdf9dcl35¢c66634badd1d10bct4302a2
7de1555df0c2700329e815b93b32c571c3ea54dc967b89e81ab73b9972b72d1d

f@b5c2c2211c8d67ed15e75e656c7862d086€9245420892a7de62cd9ec582a06
06e9d52c1720fca412803e3b07c4b228ff113e303f4c7ab94665319d832bbfb7
10159baf262b43a92d95db59daelf72c645127301661e@a3ce4e38b295a97c58
aa67a169b@bba217aa0aa88a65346920c84c42447c36ba5f7ea65f422c1fe5d8
2e6d31a5983a91251bfae5aefalc@al9d8ba3cf6@1dde8a7@6b4cfa9661abb8a

o
Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

Ooco~NOOUT PP WNES

31

SHAZ256

* One-way function
- Hard to find fi(y) = x

— A brute-force attacker requires 22°° times of search for finding the inverse

 Security implication
- If we know x, it is easy to get SHA256(x) =y
- But if we don’t know x, even if we know v, it is hard to calculate x

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

32

SHAZ256

 Hash collisions
- Input space is much larger than the output space
- Many x exists that satisfy H(x) =y
- SHA256(‘Hello, world’) = SHA256(‘Something else’)

 Security implication
— Hard to hit the exact x used by the sender that satisfies SHA256(x) =y

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

33

SHAZ256

* Avalanche effect
— Hard to find x’ for given x,y where x’ 1= x, H(x) =y, H(x") = H(x)

- SHA256(‘Hello, world’) =
03675ac53f£f9cdl1535ccc7dfcdfa?2cd458¢c5218371£418dcl136£2d19

aclfbe8ab

— Can you find another x” that produces SHA256(x’) =
03675ac53ff9cdl1535ccc7dfcdfa?2¢c458¢5218371£418dcl136£2d19
aclfbe8ab

— Other than ‘Hello, world’?

* Implication
- Even if we know X, Y where SHA256(X) =Y
— It is hard to find SHA256(X’) = Y

o
kP8 Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security 34

SHAZ256

* Avalanche effect
- A small change in the input leads to a huge difference in the output

> shaZ256sum *

9a271f2a916b0Obbeebcecb2426f0b3206ef074578be55d9bc94f6f3fe3ab86aa
4355a046b19d348dc2f57c046f8ef63d4538ebb936000f3c9ee954a27460dd865
53c234e5e8472bbac51claelcab3fe@6fadd53beb8ebfd8977b010655bfdd3c3
1121cfccd5913f0a63fecd4@abffd44eab4f9dcl35¢c66634bakd1d10bct4302a2
7de1555df0c2700329e815b93b32c571c3ea54dc967b89e81ab73b9972b72d1d
f@b5c2c2211c8d67ed15e75e656c7862d086e9245420892a7de62cd9ec582a06
06e9d52¢c1720fca412803e3b07c4b228f1113e303f4c7ab94665319d832bbfb7
10159baf262b43a92d95db59daelf72c645127301661e@a3ce4e38b295a97c58
aa67a169b@bba217aa0aa88a65346920c84c42447c36ba5f7eab5f422c1fe5d8
2e6d31a5983a91251bfaeSaefalc@al9d8ba3cf6@1dle8a706b4cfa9661abb8a

0
1
2
3
4
5
6
7
8
9

o
Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

SHAZ256

* Avalanche effect
- A small change in the input leads to a huge difference in the output
- Input space X is independent to the output space Y (Perfect security?)

 Security implication
- An adversary cannot find the relationship between x and y
* x!, H(x) =y!
* X%, H(x) =y2

- Even if x! ~ x?, y! and y? are not similar at all

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

36

CRYPTOGRAPHIC HASH WITH A

e Hard to find the inverse
- H(“ ” + message) = hash
- Hard to find the “secret” from hash

* Hard to generate a valid hash without knowing the secret
- From given M, h where H (“ "+ M)=h
- H (“secret” + M’) = h” without knowing the “secret”

o
€49 Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

37

TOPICS FOR TODAY

* Cryptographic hash
— Message authentication code (MAC)
- SHA256
- HMAC

” Oregon State
& Universi
ty

Secure Al Systems Lab :: CS 370 - Introduction to Security

38

HMAC

* Hash-based message authentication code (HMAC)
- H = a hash function (e.g., SHA256)
— HMAC = H(H(K) | | M)
- K: secret key (salt)
— H(K): hash of the key
- M: message or data

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

39

HMAC WITH ENCRYPTED DATA

* CBC Data (32-byte blocks)

Y Block O Block 1

* Suppose you have a hash key = ‘asdf’
- HMAC = SHA256(SHA256(‘asdf’) | | encrypted_data)
— =7624e1£89ce009f8ec7e6e39781a42c0a27fa38£94db4£f05£78b0£301007e06a

vV Block O Block 1 HMAC (key | | IV+BlockO+Block1)

Oregon State

0“'“:

“4?) Universi

< ty))
.) Secure Al Systems Lab :: CS 370 - Introduction to Security

40

CHECKING THE INTEGRITY WITH HMAC

| encrypt data
& added HMAC!
HMAC(key | | 0000)

e

Oregon State

&? Universif
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

41

CHECKING THE INTEGRITY WITH HMAC

| encrypt data
& added HMAC!
HMAC(key | | 0000)

Oregon State

Edit data...

N

%’@ Universi

ty .)
o) Secure Al Systems Lab :: CS 370 - Introduction to Security

42

CHECKING THE INTEGRITY WITH HMAC

| encrypt data
& added HMAC!
HMAC(K| | 0000)

Oregon State

Edit data...

N

%’@ Universi

ty .)
o) Secure Al Systems Lab :: CS 370 - Introduction to Security

43

CHECKING THE INTEGRITY WITH HMAC

Want to check if
H(K| | Data) = HMAC

Oregon State

Edit data...

N

%’@ Universi

ty .)
o) Secure Al Systems Lab :: CS 370 - Introduction to Security

44

CHECKING THE INTEGRITY WITH HMAC

| encrypt data
& added HMAC!
HMAC(K| | 0000)

Want to check if
H(K| | Data) = HMAC

1001

Edit data...

H(K || 1001) !=
H(K | | 0000)
OregonState

Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

45

CHECKING THE INTEGRITY WITH HMAC

Want to check if
H(K| | Data) = HMAC

1001

Edit data...

H(K || 1001) !=
H(K || 0000)
@F@ Oregon State Rej e Ct !

Universi
ty Secure Al Systems Lab :: CS 370 - Introduction to Security

46

CHECKING THE INTEGRITY WITH HMAC

* Suppose you have a hash key = ‘asdf’
- HMAC = SHA256(SHA256(‘asdf’) | | encrypted_data)
— =7624e1f89ce009f8ec7e6e39781a42c0a27£a38£94db4f05f78b0£301007e06a

» Suppose the attacker changed the encrypted data

vV Block 0 Block 1 HMAC (key | | IV+BlockO+Block1)

- HMAC = SHA256(SHA256(‘asdf’) | | encrypted_data)
— =389205904d6c7bb83fc676513911226f2be25bf1465616bb9029587100abl414

* Mismatch with HMAC!

Oregon State
7 University

Secure Al Systems Lab :: CS 370 - Introduction to Security

47

PRESERVING THE INTEGRITY WITH HMAC

e Can an attacker edit HMAC to match that to the edited ciphertext?
- HMAC = SHA256(SHA256(‘key’) | | edited_data)
— Attackers don’t know the key
* That’s why we need to use key to SHA256.
e Otherwise, anyone can generate valid MAC!
— Even they know SHA256(SHA256(‘key’) | | encrypted_data)
* They cannot generate a valid HMAC
* They cannot correlate that value from this one...

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

48

SUMMARY

* Block cipher (mode)s:
— Encryption/decryption operation is performed as a block-basis
- But attackers can alter ciphertexts to modify plaintexts (Micro-labs)
- They only offers

* Cryptographic hash functions
- Used to offer
- Hard to find f1(y) = x and X and Y (input and output spaces) are independent
- Work as a certificate that allows receivers to check the integrity of received data
- MAC and HMAC (advanced version, working with a key)

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

49

SUMMARY

« Recommendations
- Use MAC with encrypted data (not with plaintext data)
- Do ‘encrypt-then-MAC’
— Do not do "MAC-then-encrypt’
* We cannot know the integrity of ciphertext
* We do not know MAC until we decrypt the data
e Cryptanalysis attacks...

Oregon State
& University

Secure Al Systems Lab :: CS 370 - Introduction to Security

50

TOPICS FOR TODAY

* Recap
- Block cipher modes
- ECB and CBC
— ECB and CBC’s weaknesses and exploitations

* Block cipher modes
— Counter modes (CTR)
- CTR’s weakness

* Cryptographic hash
— Message authentication code (MAC)
- SHA256
- HMAC

AT

kP8 Oregon State

& University) !
Secure Al Systems Lab :: CS 370 - Introduction to Security

51

Thank You!

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

