
Secure AI Systems Lab

CS 370: INTRODUCTION TO SECURITY
04.20: DIGITAL SIGNATURES, CRYPTOGRAPHIC HASH, ETC.

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

TOPICS FOR TODAY

• Recap
− Block cipher modes
− ECB and CBC
− ECB and CBC’s weaknesses and exploitations

• Block cipher modes
− Counter modes (CTR)
− CTR’s weakness

• Cryptographic hash
− Message authentication code (MAC)
− SHA256
− HMAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 2

ELECTRONIC CODE BLOCK – CONT’D

• ECB Operations (and benefits)
− You can encrypt each block in parallel

0000000000000

Block
Cipher

0101011101010

0000000000001

Block
Cipher

1111011101011

0000000000000

Block
Cipher

0101011101010

0000000000001

Block
Cipher

1111011101011

K K K K

Secure AI Systems Lab :: CS 370 - Introduction to Security 3

ELECTRONIC CODE BLOCK – CONT’D

• ECB Operations (and benefits)
− You can encrypt (and decrypt) each block in parallel

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

0101011101010

0000000000000

1111011101011

0000000000001

0101011101010

0000000000000

1111011101011

0000000000001

KKK K

Secure AI Systems Lab :: CS 370 - Introduction to Security 4

ELECTRONIC CODE BLOCK – CONT’D

• ECB weakness(es)
− Using the same key leads to the same ciphertext
− An adversary can collect the ciphertext and plaintext mappings

• M: 0 -> C: 0x39827332…
• M: 1 -> C: 0x5a83f874…
• …

− An adversary can alter the plaintext by exploiting the mappings

Secure AI Systems Lab :: CS 370 - Introduction to Security 5

RECAP: MICRO-LAB

• ECB weakness
− We need to guess what is inside this super-secretly encrypted photo

Secure AI Systems Lab :: CS 370 - Introduction to Security 6

ELECTRONIC CODE BLOCK – CONT’D

• ECB weakness(es)
− Using the same key leads to the same ciphertext
− An adversary can guess the message by looking at the ciphertext
− An adversary can modify the ciphertext to compromise the plaintext

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

0101011101010

0000000000000

1111011101011

0000000000001

0101011101010

0000000000000

1111011101011

0000000000001

KKK K

Attacker knows this

1111011101011

0000000000001

Secure AI Systems Lab :: CS 370 - Introduction to Security 7

CIPHER BLOCK CHAIN

• CBC
− Operations

• M: XOR between IV (initialization vector) and the P0 (plaintext)
• Encryption: use the ciphertext from the prev. block as IV and run block encryption

0000000000000

Block
Cipher

0101011101010

0000000000001

Block
Cipher

1100011110101

0000000000000

Block
Cipher

0001110111011

0000000000001

Block
Cipher

1101011101110

K K K K

101011101010 ⊕ ⊕ ⊕ ⊕
IV

IV ⊕ P0 C0 ⊕ P1

P0 P1 P2 P3

C1 ⊕ P2 C2 ⊕ P3

C0 C1 C2 C3

Secure AI Systems Lab :: CS 370 - Introduction to Security 8

CIPHER BLOCK CHAIN – CONT’D

• CBC
− Operations

• M: XOR between IV (initialization vector) and the P0 (plaintext)
• Encryption: use the ciphertext from the prev. block as IV and run block encryption
• Decryption: user the ciphertext from the prev. block as IV and run block decryption

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

0101011101010

0000000000000

1100011110101

0000000000001

0001110111011

0000000000000

1101011101110

0000000000001

KKK K

101011101010 ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3

Secure AI Systems Lab :: CS 370 - Introduction to Security 9

CIPHER BLOCK CHAIN – CONT’D

• CBC
− Operations

• M: XOR between IV (initialization vector) and the P0 (plaintext)
• Encryption: use the ciphertext from the prev. block as IV and run block encryption
• Decryption: user the plaintext from the prev. block as IV and run block decryption

− Benefits
• Address the ECB’s weakness

− Both encryption and decryption are not deterministic
− We can do this by choosing a random IV

• Check it out by yourself: link to cbc-encrypted image

Secure AI Systems Lab :: CS 370 - Introduction to Security 10

https://secure-ai.systems/courses/Sec-UGrad/Sp23/resources/cbc-encrypted.bmp

CIPHER BLOCK CHAIN – CONT’D

• CBC weakness
− Can’t run encryption in parallel

0000000000000

Block
Cipher

0101011101010

0000000000001

Block
Cipher

1100011110101

0000000000000

Block
Cipher

0001110111011

0000000000001

Block
Cipher

1101011101110

K K K K

101011101010 ⊕ ⊕ ⊕ ⊕
IV

IV ⊕ P0 C0 ⊕ P1

P0 P1 P2 P3

C1 ⊕ P2 C2 ⊕ P3

C0 C1 C2 C3

Secure AI Systems Lab :: CS 370 - Introduction to Security 11

CIPHER BLOCK CHAIN – CONT’D

• CBC weakness
− Can’t run encryption in parallel
− But can run decryption in parallel (why this is a weakness?)

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

0101011101010

0000000000000

1100011110101

0000000000001

0001110111011

0000000000000

1101011101110

0000000000001

KKK K

101011101010 ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3

Secure AI Systems Lab :: CS 370 - Introduction to Security 12

CIPHER BLOCK CHAIN – CONT’D

• CBC weakness
− Can’t run encryption in parallel
− But can run decryption in parallel
− An attacker can alter the previous block’s ciphertext

to manipulate the current block’s plaintext

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

0101011101010

0000000000000

1100011110101

0000000000001

0001110111011

0000000000000

1101011101110

0000000000001

KKK K

101011101010 ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3

Secure AI Systems Lab :: CS 370 - Introduction to Security 13

RECAP: MICRO-LAB: EXPLOITING THE WEAKNESS OF CBC

• Job 1
− Create a copy of this data with ‘uid == 0’
− Use template.py (marked as XXX)
− (Warning) we cannot use the last block

• Hint
− Find a way to flip the decrypted value of the 1st block

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

uid = 1 notadministrator passwordpassword The sky is blue,

KKK K

101011101011 ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3
0000000000000 notadministrator passwordpassword The sky is blue,

What if we flip IV’s last bit from 0 to 1

Secure AI Systems Lab :: CS 370 - Introduction to Security 14

TOPICS FOR TODAY

• Recap
− Block cipher modes
− ECB and CBC
− ECB and CBC’s weaknesses and exploitations

• Block cipher modes
− Counter modes (CTR)
− CTR’s weakness

• Cryptographic hash
− Message authentication code (MAC)
− SHA256
− HMAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 15

COUNTER MODE: ENCRYPTION

• CTR
− A popular block cipher mode
− Operations

• Start with a random nonce || counter
• Encryption: encrypt the random nonce || counter and XOR the result with a plaintext

3a88dff8000001

Block
Cipher

0101011101010

3a88dff8000002

Block
Cipher

1100011110101

3a88dff8000003

Block
Cipher

0001110111011

3a88dff8000004

Block
Cipher

1101011101110

K K K K

3a88dff8
Nonce || 1

Nonce
Nonce || 2 Nonce || 3 Nonce || 4

⊕
uid = 0

010101110101

⊕
notadministrato

110111101101

⊕
passwordpassw

001110101011

⊕
The sky is blue,

1101111101111

Secure AI Systems Lab :: CS 370 - Introduction to Security 16

COUNTER MODE: DECRYPTION

• CTR
− A popular block cipher mode
− Operations

• Start with a random nonce || counter
• Decryption: decrypt the random nonce || counter and XOR the result with a ciphertext

3a88dff8000001

Block
Cipher

0101011101010

3a88dff8000002

Block
Cipher

1100011110101

3a88dff8000003

Block
Cipher

0001110111011

3a88dff8000004

Block
Cipher

1101011101110

K K K K

3a88dff8
Nonce || 1

Nonce
Nonce || 2 Nonce || 3 Nonce || 4

⊕ ⊕ ⊕ ⊕
010101110101 110111101101 001110101011 1101111101111

uid = 0 notadministrato passwordpassw The sky is blue,
Secure AI Systems Lab :: CS 370 - Introduction to Security 17

COUNTER MODE

• CTR
− A mode of block cipher operations
− Operations

• Start with a random nonce || counter
• Encryption: encrypt the random nonce || counter and XOR the result with a plaintext
• Decryption: decrypt the random nonce || counter and XOR the result with a ciphertext

− Benefits
• We can run encryption and decryption in parallel

Secure AI Systems Lab :: CS 370 - Introduction to Security 18

COUNTER MODE: WEAKNESS

• CTR weakness
− Any alteration in the ciphertext will be reflected on the plaintext
− Enjoy 3 Micro-labs on ctr-attack J

3a88dff8000001

Block
Cipher

0101011101010

3a88dff8000002

Block
Cipher

1100011110101

3a88dff8000003

Block
Cipher

0001110111011

3a88dff8000004

Block
Cipher

1101011101110

K K K K

3a88dff8
Nonce || 1

Nonce
Nonce || 2 Nonce || 3 Nonce || 4

⊕ ⊕ ⊕ ⊕
010101110101 110111101101 001110101011 1101111101111

uid = 0 notadministrato passwordpassw The sky is blue,

An attacker cares
the connection btw
C0 and P0, not others

Secure AI Systems Lab :: CS 370 - Introduction to Security 19

SUMMARY

• ECB, CBC, CTR…
− Block cipher modes
− A common weakness

• An adversary can manipulate encrypted data
• such a way that they can alter the plaintext data as they want
• ECB: an adversary can know the mappings btw ciphertext and plaintext and exploit them
• CBC: an attacker can manipulate the ciphertext of the previous block to do alterations
• CTR: an attacker can manipulate the ciphertext directly to do alterations

How Can We Address Such Weaknesses?

Secure AI Systems Lab :: CS 370 - Introduction to Security 20

TOPICS FOR TODAY

• Recap
− Block cipher modes
− ECB and CBC
− ECB and CBC’s weaknesses and exploitations

• Block cipher modes
− Counter modes (CTR)
− CTR’s weakness

• Cryptographic hash
− Message authentication code (MAC)
− SHA256
− HMAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 21

CRYPTOGRAPHIC HASH

• Cryptographic hash
− Hash functions with specific properties

• A function: f(x) = y
• Generate a fixed-length output (e.g., 256-bit: 32-byte)
• Desirable security properties

− Make it difficult to find the inverse: f-1(y) = x
− Knowing the mappings of (x, y) does not help with inferring f(x’) = ?
− (Ideally) X and Y are independent to each other

Secure AI Systems Lab :: CS 370 - Introduction to Security 22

CRYPTOGRAPHIC HASH

• Cryptographic hash
− Hash functions with specific properties

• A function: f(x) = y
• Generate a fixed-length output (e.g., 256-bit: 32-byte)
• Desirable security properties

− Make it difficult to find the inverse: f-1(y) = x
− Knowing the mappings of (x, y) does not help with inferring f(x’) = ?
− (Ideally) X and Y are independent to each other

− Benefits (enables MAC)
• We can check the integrity of the ciphertext before we decrypt
• The sender sends a ciphertext C with the hash f(salt + C) to receiver
• The receiver runs f(salt + C) by themselves and see if it matches with the sender’s

Secure AI Systems Lab :: CS 370 - Introduction to Security 23

CRYPTOGRAPHIC HASH

• Message authentication code (MAC)
− How to compute?

• f(salt + C) = MAC
• f(salt +) = MACIV Block 0 Block 1

Secure AI Systems Lab :: CS 370 - Introduction to Security 24

CRYPTOGRAPHIC HASH

• Message authentication code (MAC)
− How to compute?

• f(salt + C) = MAC
• f(salt +) = MAC

− How to send?
• Append the MAC block in the end and send to a receiver

IV Block 0 Block 1

IV Block 0 Block 1 MAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 25

CRYPTOGRAPHIC HASH

• Message authentication code (MAC)
− How to compute?

• f(salt + C) = MAC
• f(salt +) = MAC

− How to send?
• Append the MAC block in the end and send to a receiver

− How to check?
• Receiver computes
• f(salt +) = MAC’
• Checks if MAC’ = MAC

IV Block 0 Block 1

IV Block 0 Block 1 MAC

IV Block 0 Block 1

Secure AI Systems Lab :: CS 370 - Introduction to Security 26

CRYPTOGRAPHIC HASH

• We can achieve message integrity
− Suppose an adversary manipulate the ciphertext

• Receiver will compute f(salt +) = MAC’
• Receiver will notice MAC’ != MAC
• It’s easy for the receiver to identify MAC’ != MAC as f(x) is designed

to make a completely different MAC’ even under a small changes in x

IV Block 0 Block 1 MAC

IV Block 0 Block 1 MAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 27

CRYPTOGRAPHIC HASH

• We can achieve message integrity
− Suppose an adversary manipulate the ciphertext

• Receiver will compute f(salt +) = MAC’
• Receiver will notice MAC’ != MAC
• It’s easy for the receiver to identify MAC’ != MAC as f(x) is designed

to make a completely different MAC’ even under a small changes in x

− Suppose an adversary knows the salt (key) and manipulate the ciphertext

• Receiver will compute f(salt +) = MAC’’
• Receiver will notice MAC’’ == MAC_X

IV Block 0 Block 1 MAC

IV Block 0 Block 1 MAC

IV Block 0 Block 1 MAC

IV Block 0 Block 1 MAC_X

Secure AI Systems Lab :: CS 370 - Introduction to Security 28

CRYPTOGRAPHIC HASH FUNCTION

• SHA256
− A hash function that generates a fingerprint of a data
− It returns 32-byte (256-bit) hashed value for any length data

• SHA256(‘Hello, world’) =
03675ac53ff9cd1535ccc7dfcdfa2c458c5218371f418dc136f2d19ac1fbe8a5

− The function has some security properties:
• One-way function
• Hard to find x for given y where H(x) = y
• Hard to find x’ for given x,y where x != x’, H(x) = y and H(x’) = y

Secure AI Systems Lab :: CS 370 - Introduction to Security 29

CRYPTOGRAPHIC HASH FUNCTION

• SHA256
− SHA256 is in the SHA2 standard
− Input x can be any-length data and output y is 256-bit

(Hash collision: two or more inputs can be mapped to the same hash value)

• Desirable properties of SHA256
− It is one-way function
− SHA256(‘Hello, world’) =
03675ac53ff9cd1535ccc7dfcdfa2c458c5218371f418dc136f2d19ac1fbe8a5

− SHA256-1(03675ac53ff9cd1535ccc7dfcdfa2c458c5218371f418 dc136f2d19ac1fbe8a5) ==
???? there could be many..

Secure AI Systems Lab :: CS 370 - Introduction to Security 30

SHA256 EXAMPLES

Secure AI Systems Lab :: CS 370 - Introduction to Security 31

SHA256

• One-way function
− Hard to find f-1(y) = x
− A brute-force attacker requires 2256 times of search for finding the inverse

• Security implication
− If we know x, it is easy to get SHA256(x) = y
− But if we don’t know x, even if we know y, it is hard to calculate x

Secure AI Systems Lab :: CS 370 - Introduction to Security 32

SHA256

• Hash collisions
− Input space is much larger than the output space
− Many x exists that satisfy H(x) = y
− SHA256(‘Hello, world’) = SHA256(‘Something else’)

• Security implication
− Hard to hit the exact x used by the sender that satisfies SHA256(x) = y

Secure AI Systems Lab :: CS 370 - Introduction to Security 33

SHA256

• Avalanche effect
− Hard to find x’ for given x,y where x’ != x, H(x) = y, H(x’) = H(x)
− SHA256(‘Hello, world’) =
03675ac53ff9cd1535ccc7dfcdfa2c458c5218371f418dc136f2d19
ac1fbe8a5

− Can you find another x’ that produces SHA256(x’) =
03675ac53ff9cd1535ccc7dfcdfa2c458c5218371f418dc136f2d19
ac1fbe8a5

− Other than ‘Hello, world’?

• Implication
− Even if we know X, Y where SHA256(X) = Y
− It is hard to find SHA256(X’) = Y

Secure AI Systems Lab :: CS 370 - Introduction to Security 34

SHA256

• Avalanche effect
− A small change in the input leads to a huge difference in the output

Secure AI Systems Lab :: CS 370 - Introduction to Security 35

SHA256

• Avalanche effect
− A small change in the input leads to a huge difference in the output
− Input space X is independent to the output space Y (Perfect security?)

• Security implication
− An adversary cannot find the relationship between x and y

• x1, H(x) = y1

• x2, H(x) = y2

• …
− Even if x1 ~ x2, y1 and y2 are not similar at all

Secure AI Systems Lab :: CS 370 - Introduction to Security 36

CRYPTOGRAPHIC HASH WITH A KEY (SECRET OR SALT)

• Hard to find the inverse
− H(“secret” + message) = hash
− Hard to find the “secret” from hash

• Hard to generate a valid hash without knowing the secret
− From given M, h where H (“secret” + M) = h
− H (“secret” + M’) = h’ without knowing the “secret”

Secure AI Systems Lab :: CS 370 - Introduction to Security 37

TOPICS FOR TODAY

• Recap
− Block cipher modes
− ECB and CBC
− ECB and CBC’s weaknesses and exploitations

• Block cipher modes
− Counter modes (CTR)
− CTR’s weakness

• Cryptographic hash
− Message authentication code (MAC)
− SHA256
− HMAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 38

HMAC

• Hash-based message authentication code (HMAC)
− H = a hash function (e.g., SHA256)
− HMAC = H(H(K) || M)
− K: secret key (salt)
− H(K): hash of the key
− M: message or data

Secure AI Systems Lab :: CS 370 - Introduction to Security 39

HMAC WITH ENCRYPTED DATA

• CBC Data (32-byte blocks)

• Suppose you have a hash key = ‘asdf’
− HMAC = SHA256(SHA256(‘asdf’) || encrypted_data)
− = 7624e1f89ce009f8ec7e6e39781a42c0a27fa38f94db4f05f78b0f301007e06a

IV Block 0 Block 1

IV Block 0 Block 1 HMAC (key || IV+Block0+Block1)

Secure AI Systems Lab :: CS 370 - Introduction to Security 40

CHECKING THE INTEGRITY WITH HMAC

I encrypt data
& added HMAC!
HMAC(key||0000)

0000 HMA
C

Secure AI Systems Lab :: CS 370 - Introduction to Security 41

CHECKING THE INTEGRITY WITH HMAC

I encrypt data
& added HMAC!
HMAC(key||0000)

0000 HMA
C

Edit data…

Secure AI Systems Lab :: CS 370 - Introduction to Security 42

CHECKING THE INTEGRITY WITH HMAC

I encrypt data
& added HMAC!
HMAC(K||0000)

1001 HMA
C

Edit data…

Secure AI Systems Lab :: CS 370 - Introduction to Security 43

CHECKING THE INTEGRITY WITH HMAC

Want to check if
H(K||Data) = HMAC

1001 HMA
C

Edit data…

Secure AI Systems Lab :: CS 370 - Introduction to Security 44

CHECKING THE INTEGRITY WITH HMAC

Want to check if
H(K||Data) = HMAC

1001 HMA
C

Edit data…

1001

H(K || 1001) !=
H(K || 0000)

I encrypt data
& added HMAC!
HMAC(K||0000)

Secure AI Systems Lab :: CS 370 - Introduction to Security 45

CHECKING THE INTEGRITY WITH HMAC

Want to check if
H(K||Data) = HMAC

1001 HMA
C

Edit data…

Reject!

1001

H(K || 1001) !=
H(K || 0000)

Secure AI Systems Lab :: CS 370 - Introduction to Security 46

CHECKING THE INTEGRITY WITH HMAC

• Suppose you have a hash key = ‘asdf’
− HMAC = SHA256(SHA256(‘asdf’) || encrypted_data)
− = 7624e1f89ce009f8ec7e6e39781a42c0a27fa38f94db4f05f78b0f301007e06a

• Suppose the attacker changed the encrypted_data

− HMAC = SHA256(SHA256(‘asdf’) || encrypted_data)
− = 389205904d6c7bb83fc676513911226f2be25bf1465616bb9b29587100ab1414

• Mismatch with HMAC!

IV Block 0 Block 1 HMAC (key || IV+Block0+Block1)

Secure AI Systems Lab :: CS 370 - Introduction to Security 47

PRESERVING THE INTEGRITY WITH HMAC

• Can an attacker edit HMAC to match that to the edited ciphertext?
− HMAC = SHA256(SHA256(‘key’) || edited_data)
− Attackers don’t know the key

• That’s why we need to use key to SHA256.
• Otherwise, anyone can generate valid MAC!

− Even they know SHA256(SHA256(‘key’)|| encrypted_data)
• They cannot generate a valid HMAC
• They cannot correlate that value from this one…

Secure AI Systems Lab :: CS 370 - Introduction to Security 48

SUMMARY

• Block cipher (mode)s:
− Encryption/decryption operation is performed as a block-basis
− But attackers can alter ciphertexts to modify plaintexts (Micro-labs)
− They only offers data confidentiality

• Cryptographic hash functions
− Used to offer data integrity
− Hard to find f-1(y) = x and X and Y (input and output spaces) are independent
− Work as a certificate that allows receivers to check the integrity of received data
− MAC and HMAC (advanced version, working with a key)

Secure AI Systems Lab :: CS 370 - Introduction to Security 49

SUMMARY

• Recommendations
− Use MAC with encrypted data (not with plaintext data)
− Do ‘encrypt-then-MAC’
− Do not do `MAC-then-encrypt`

• We cannot know the integrity of ciphertext
• We do not know MAC until we decrypt the data
• Cryptanalysis attacks…

Secure AI Systems Lab :: CS 370 - Introduction to Security 50

TOPICS FOR TODAY

• Recap
− Block cipher modes
− ECB and CBC
− ECB and CBC’s weaknesses and exploitations

• Block cipher modes
− Counter modes (CTR)
− CTR’s weakness

• Cryptographic hash
− Message authentication code (MAC)
− SHA256
− HMAC

Secure AI Systems Lab :: CS 370 - Introduction to Security 51

Thank You!

Secure AI Systems Lab

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

