CS 370: INTRODUCTION TO SECURITY 04.25: RSA, DIGITAL CERTIFICATE

Tu/Th 4:00 - 5:50 PM

Sanghyun Hong

sanghyun.hong@oregonstate.edu

TOPICS FOR TODAY

- Public key cryptography
 - What is it?
 - What problem does it solve?
 - What is a popular public-key cryptography algorithm?
 - What can we do with the public-key crypto-algorithm in practice?

SYMMETRIC KEY CRYPTOGRAPHY

• So far, we've talked about this world

SYMMETRIC KEY CRYPTOGRAPHY

- Problems
 - How can we securely share the key between two parties?
 - How can we manage communications from/to multiple parties (100+)?

- Problems
 - How can we securely share the key between two parties?
 - How can we manage communications from/to multiple parties (100+)?
- Solutions
 - What if I have two keys?
 - Key A that only can encrypt a message (but can't decrypt)
 - Key B that can encrypt and decrypt a message
 - How can I leverage the two keys?
 - Share Key A to others
 - Do not share; keep Key B private

- The key idea
 - Asymmetric key cryptography
 - Use two different keys for encryption and decryption
 - Public key: share to others, only can encrypt a message
 - Private key: do not share, can encrypt and decrypt
 - What is possible?

- The key idea
 - Asymmetric key cryptography
 - Use two different keys for encryption and decryption
 - Public key: share to others, only can encrypt a message
 - Private key: do not share, can encrypt and decrypt
 - What is possible?

- The key idea
 - Asymmetric key cryptography
 - Use two different keys for encryption and decryption
 - Public key: share to others, only can encrypt a message
 - Private key: do not share, can encrypt and decrypt
 - What is possible?

- The key idea
 - Asymmetric key cryptography
 - Use two different keys for encryption and decryption
 - Public key: share to others, only can encrypt a message
 - Private key: do not share, can encrypt and decrypt
 - What is possible?
 - No one can decrypt a ciphertext unless they have the private key
 - We do not need to share the private key to anyone else
 - We share public key that can only encrypt the message

- RSA (Rivest, Shamir, Adleman)
 - A popular public key cryptography algorithm
 - It exploits the difficulty of prime factorization
 - To break RSA, an adversary solves the prime factorization of a large number
 - It is used for digital signature (we will revisit this later)

- Asymmetric key cryptography
 - Public key: e and N
 - Private key: d
- Key selection:
 - Choose two large prime number, p and q
 - Public key:
 - Set N = pq
 - Choose e as a coprime of $\phi = (p-1)(q-1)$
 - Private key:
 - Fine d that satisfies $de == 1 \pmod{\phi}$

- Key selection:
 - Choose two large prime number, p and q
 - Public key:
 - Set N = pq
 - Choose e (e.g., 65537) as a coprime of $\phi = (p-1)(q-1)$
 - Private key:
 - Fine d that satisfies $de == 1 \pmod{\phi}$
- Security
 - Concern: can an adversary guess the private key from the public key?
 - To do such an attack, the attacker needs to find $\boldsymbol{\varphi}$
 - But we choose p and q as a large prime number; thus, it is difficult

RSA ENCRYPTION

- Suppose we have
 - Public key: e, N
 - Message: M
 - Ciphertext: M^e mod N

RSA DECRYPTION

- We have
 - Public key: e, N
 - Message: M
 - Ciphertext: Me mod N
- Suppose we also have
 - Public key: e N
 - Private key: d (that satisfies ed = 1)
 - Ciphertext: C = M^e
 - Plaintext: C^d mod N
 - = $(M^e)^d \mod N$
 - = M^{ed} mod N
 - = M mod N (N is a really large prime, so mostly it's N)

RSA-4096

• N

>>> n

9430 938119714023972266118390177332532125901077755365486562298472494401060437900984130144176448780614034661230366357971845548165265742251289534980309219758481925957858787 99446168652865946938887547013421958335603541458898859985233102756405213301150045330555227176327316853262195678419436714942441575701768037454456833917315101830 888566819402259448562713246694911850237546457273939412335059112266076929457503053224563511489048454075509483560926922211748266285104890478454075503952250948456092570647588621950002292211748266285104831675845 83315533957568315104232320670250600708758347303059147821341336205419089515531617207836027717015263175059127264155564477809166344370523152038595667063337410819626147392 61504146573604212524025625329042730131363602682044377326955452090313527140181660938098912578771135637220314866221980566704855875256480930486742228216374620641072794 39035295803547382839528902460696618996010706014197280097861310233823234888621192701394780193796900301510396063855789518617879808500828987759386908963639259712107524427 231477780322475571647643665402826422014897158974572860770832311

p and q

>>> p

 $3206 \frac{1}{6} \frac{1}{6}$

>>> q

 $29405^{-}710472654850958671060473587380272033499777734903189797277426735514030035532965482063353212922226402913874044149998317523110466061475176680432299649469830549588552783064653491009649840362549101721103516041972354390185693630338044408842038521976699024431191628817763949933904089809136910226092610967918104087032453409039258739672713191587379282523331830953684166968305710984353705563308623907954867167841882544912241739971663253555166861785152529953574580079269072783315630827862523161634507877878865253421887593666478665478650181494157928556050305135965957928043624121441745146634862224319552895641696140372807$

>>> p*q == n

True_

e and d

>>> e 65537

>>> d

 $\frac{1}{1} 8849384718575836845896027058446964676474069889583977304207060764212294704213288583979822675876320692881116222058550218329698543675506704371830299154811288476755744686\\ 331223099222027815559651972520197306091278492993085950930161430591175850840027650104348863680455984467737580287309934491479568764559646855844783111507028292873460032\\ 084585014473128752445096184731651991118971938464008890520859002717382265085902312459296854367550670437183029915485123051232737047070347887009185238051932480513548957372660735033176926485954446755757461541820728219898456478814438777554613519848613000196946332897123652219249131582620\\ 1841960047918905963542962725175948310131492328703484839408409780479225231026682247393347482342538746392290975854513519848613704546491580001969463328771546135198466377536561264788728198496135116479479253219249131582620\\ 184196004791890596354296272517594831013149232870348484394084097804792252310266822473933474823425387463922909758657287281294744546491580072736311557807437862627569946889178666247494581841352302466235459967764364918805847156451559607273631198756341557807437862627569946889235027253754613524051559667273631198756341557807437862627569946889235027568204228245394592542962753234525638129572345256381290775365131928639817866247494581841352302466235459659021020998701475666730847358872811832145689235027568204220365328299552345256381290779360156730477681648705813119208309867313700342238143986105116240780118438189749002504588094933776149648209294\\ 86455693297913060447945831299028211405464145580045414558004737614945813119208309867313700342238143986105116240780118438189749002504588094933776149648209294$

RSA-4096 (CONT'D)

• Encryption

>>> m = 12345

>>> c = pow(m, e, n) # m ** e % n >>> c

• p and q

>>>	_c	Η	pow(c,	d,	n)	#	С	**	d	0/0	n	==	m	**	(de)	0/0	n	==	m	0/0	n	==	m
>>>	_c																						
1234	15																						
>>>																							

RSA-4096 (CONT'D)

- Benefits:
 - We can publicize our public keys
 - Encryption/decryption
 - Anyone can encrypt their Ms with your public key: (e, N) is public and C := M^e mod N
 - Only you can decrypt this message: d is private M^{ed} == M¹ == M (mod N)

ightarrow **C a** github.com/torvalds.keys

ssh-rsa

4

AAAAB3NzaC1yc2EAAAADAQABAAABAQCoQ9S7V+CufAgwoehnf2TqsJ9LTsu8pUA3FgpS2mdVwcMcTs++8P5sQcXHL tDmLpWN4k7NQgxaYloXy5e25x/4VhXaJXWEt3luSw+Phv/PB2+aGLvqCUirsLTAD2r7ieMhd/pcVf/HlhNUQgnO1 mupdbDyg2oGD/uCcJivav8i/V7nJWJouHA8yq31XS2yqXp9m3VC7UZ2HzUsVJA9Us5YqF0hKYeaGruIHR2bwoDF9Z FMss5t6/pzxMljU/ccYwvvRDdI7WX4o4+zLuZ6RWvsU6LGbbb0pQdB72tlV41fSefwFsk4JRdKbyV3Xjf25pV4IXO Tcqhy+4JTB/jXxrF

PUBLIC KEY CRYPTOGRAPHY AND KEY EXCHANGE

- Suppose we have five people (A, B, C, D, E)
 - How many keys do we need to make them communicate securely?
 - How can we make everybody be able to talk to anyone?
- In block cipher
 - Need 1 key for two of them (A and B) can talk securely
 - How many keys do we need for all?
 - A-B, A-C, A-D, A-E
 - B-C, B-D, B-E
 - C-D, C-E
 - D-E
 - 10 keys (5C₂ = 10)

KEY EXCHANGE IN SYMMETRIC KEY CRYPTOGRAPHY

- Key exchange complexity
 - A key per each pair of people
 - ${}_{n}C_{2} = N (N 1) / 2$
 - O(N²)

KEY EXCHANGE IN ASYMMETRIC KEY CRYPTOGRAPHY

- Key exchange complexity
 - Each person shares their public key to everybody
 - But they do not share their private key
 - We need O(N) keys
- Benefit: it scales!
 - Suppose we have a crypto conference with 400 folks
 - Symmetric key crypto: we need 400 x 399 / 2 keys for secure comm.
 - Asymmetric key crypto: we only need 400 public-private key pairs

- Digital signature
 - A mathematical scheme for verifying the authenticity of digital messages
 - RSA can be used for the digital signature
- Recap: encryption and decryption
 - Encryption is applying the public exponent to a plaintext: C = M^e mod N
 - Decryption is applying the private exponent to a ciphertext: $M = C^d \mod N$

- Digital signature
 - A mathematical scheme for verifying the authenticity of digital messages
 - RSA can be used for the digital signature
- Recap: encryption and decryption
 - Encryption is applying the public exponent to a plaintext: C = M^e mod N
 - Decryption is applying the private exponent to a ciphertext: $M = C^d \mod N$
- Encryption and decryption for digital signature
 - Encryption is applying the private exponent to a plaintext: C = M^d mod N
 - Decryption is applying the public exponent to a ciphertext: M = C^e mod N

- Digital signature
 - A mathematical scheme for verifying the authenticity of digital messages
 - RSA can be used for the digital signature
- Encryption and decryption for digital signature
 - Encryption is applying the private exponent to a plaintext: C = M^d mod N
 - Decryption is applying the public exponent to a ciphertext: $M = C^{e} \mod N$

- Digital signature
 - A mathematical scheme for verifying the authenticity of digital messages
 - RSA can be used for the digital signature
- Encryption and decryption for digital signature
 - Encryption is applying the private exponent to a plaintext: C = M^d mod N
 - Decryption is applying the public exponent to a ciphertext: M = C^e mod N

- Digital signature
 - A mathematical scheme for verifying the authenticity of digital messages
 - RSA can be used for the digital signature
- Encryption and decryption for digital signature
 - Encryption is applying the private exponent to a plaintext: C = M^d mod N
 - Decryption is applying the public exponent to a ciphertext: M = C^e mod N

- Suppose:
 - A wants to send "I would like to buy a Pizza for Sanghyun if I get A from CS 370"
 - A encrypts the plaintext with their private key
 - $C = m^d \mod N$

- Suppose:
 - You want to send "I would like to buy a Pizza for Sanghyun if I get A from CS 370"
 - You encrypt the plaintext with their private key
 - $C = m^d \mod N$
- Now Sanghyun receives C
 - $C = m^d \mod N$
 - SH has the public key e
 - and runs C^e
 - == m^{de}
 - == m¹
 - == m (mod N)

• == "I would like to buy a Pizza for Sanghyun ..."

Important:

- C only can be generated with the private key
- C can be decrypted by anyone who has "e"
- We know the private key owner endorsed M
- We call it as "signing"

RSA AND DIGITAL SIGNATURE

- Can we use symmetric key for "signing"?
 - A-B, A-C, A-D, A-E
 - B-C, B-D, B-E
 - C-D, C-E
 - D-E
- Suppose M was encrypted with the key shared between D and E
 - Either D or E can generate the message -> ambiguity
 - Only D or E can verify that -> it is not public
 - They must leak the key D-E for verification -> the secret key need to be publicized

TOPICS FOR TODAY

- Public key cryptography
 - A symmetric key cryptography
 - Benefits:
 - We don't need to share our private keys
 - Only the private key owners can decrypt C generated by the public key
 - RSA-4096
 - In practice, we use it:
 - For the secure communication
 - For the digital signature (i.e., "signing")

Thank You!

Tu/Th 4:00 - 5:50 PM

Sanghyun Hong

sanghyun.hong@oregonstate.edu

