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TOPICS FOR TODAY

• Digital certificate
− What is it?
− What problem does it solve?
− How to create a digital certificate?
− How does it make the Internet secure?

• Diffie-Hellman
− What is it?
− What problem does it solve?
− What is the weakness of DH?
− How can we address the weakness?
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DIGITAL CERTIFICATE: MOTIVATION

• An example scenario:
− Suppose the oregonstate.edu server has the public/private key
− You want to connect to the website securely

− Confidentiality: comes from the Block Cipher that we will use
− Integrity: comes from HMAC

• Where’s authenticity?
− How do you know the other end is oregonstate.edu?
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Plaintext

IV Ciphertext with padding HMAC



HOW CAN WE CHECK THE AUTHENTICITY?
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Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!
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HOW DO WE DO THAT IN THE REAL-LIFE?
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www.oregonstate.edu
0x83823787832a87b876

e67fe67e6da



HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 
− Need information that we can use to verify the sender

• Solution
− Let’s do this with RSA cryptography algorithm
− Let “oregonstate.edu” publicize the public key
− Let “oregonstate.edu” share their info. and signed by their private key
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RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N
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RSA

M: SH’s MSG

S: 0x12f573bde2
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RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for digital signature
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N
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RSA

M’s from “SH”

M: SH’s MSG

S: 0x12f573bde2



HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 
− Need information that we can use to verify the sender

• Solution: Public Key Infrastructure (PKI)
− Let’s do this with RSA cryptography algorithm
− Let “oregonstate.edu” publicize the public key
− Let “oregonstate.edu” share their info. and signed by their private key

(= we create a digital certificate)
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THE INFO: DIGITAL CERTIFICATE

• A file that contains
− Entity info (CN)
− Issuer info (CN)
− Public key
− Signature
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key
− Signature (proving that I have the public key)
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Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(using beaver’s private key)
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Get SHA256 sum of this part

Sign it with the private key



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information
− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))
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− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))
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HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information
− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))

• Anyone with the public key can verify the result
− Get issuer’s public key from their certificate
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CERTIFICATION CREATION DETAILS: STEP 1

• The certificate requesting entity fills
− Entity information
− Public Key

• Entity:
− For google, its *.google.com
− Can be your website address

• *.secure-ai.systems
− also has a certificate
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CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(with beaver’s private key)



CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity

• Their identification
• Owning the target domain name
• Owning the public key

− The signature
• Decrypt the signature with public key
• It must be the same as SHA256 sum
• It proves their holding the private key
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CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(with beaver’s private key)



CERTIFICATION CREATION DETAILS: STEP 2
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• The issuer receives the certificate request and verifies:
− Entity:

• Their identification
• Owning the target domain name
• etc…

− Then, fill issuer information
• Issuer information
• Issuer public key

CN = oregonstate.edu
Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff



CERTIFICATION CREATION DETAILS: STEP 2
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• The issuer receives the certificate request and verifies:
− Entity:

• Their identification
• Owning the target domain name
• etc…

− Then, fill issuer information
• Issuer information
• Issuer public key

− and then, sign the certificate
• Get SHA-256 of the certificate
• Attach it as a signature!

CN = oregonstate.edu
Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
Signature: 0xffeeddccbbaa00112233445566778899

(InCommon RSA’s private key)



THE CERTIFICATE ISSUED

• Now InCommon RSA verified
− oregonstate.edu is owned by
− Oregon State University
− With a specific Public Key
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RECAP: OSU CERTIFICATE

• OSU owns “oregonstate.edu”
− Verified by InCommon RSA

• Verification of the certificate
− Use InCommon RSA’s public key
− Where is it? It is written in InCommon RSA’s certificate

• But InCommon RSA, who will verify their identity?
− InCommon RSA verifies “oregonstate.edu”
− Who will verify InCommon RSA?
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LET’S SEE IT FROM THE BROWSER

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self
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TRUST CHAIN
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• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN – CONT’D
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• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN – CONT’D
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• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN IN REAL-LIFE

• An example:
− Student
− Oregon resident
− U.S. Citizen

• When issuing the student ID
− We verify your Oregon ID…
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TRUST CHAIN IN REAL-LIFE
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We need someone to verify the 
originality of the proving document…



ROOT CERTIFICATE AUTHORITY (ROOT CA ≈ US IN PREV. EXAMPLE)

• Define small set of trustworthy certificate authorities
− Private companies are authorized by some jurisdiction to run the CA company

• Google Trust Service (GTS CA)
• DigiCert
• Verisign
• etc..

• Trust their self-signed certificate
− Stored in almost every computer machines
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PUBLIC KEY INFRASTRUCTURE (PKI)
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oregonstate.edu

InCommon

USERTrust

• An Infrastructure that provides public key with certificate chain

• Trust anchor: Root CA
− Set a small set of entities use self-signed cert

• Verify the certificate chain!
− Must verify the entire chain



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!
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Hey, are you oregonstate.edu?
Give me your certificate



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!
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Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert (certificate)



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!
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Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

Oregonstate verified by InCommon RSA



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!
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Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

InCommon RSA verified by USERTrust RSA



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

39

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

USERTrust RSA is self-verified (ROOT CA)



TOPICS FOR TODAY

• Digital certificate
− What is it?
− What problem does it solve?
− How to create a digital certificate?
− How does it make the Internet secure?

• Diffie-Hellman
− What is it?
− What problem does it solve?
− What is the weakness of DH?
− How can we address the weakness?
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DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel
− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm

41



DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS
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g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p



DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel
− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm
− Example:

• Given g, a, b, A, B, where
• ga mod p = A
• gb mod p = B
• Can you compute gab mod p?
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https://web.northeastern.edu/dummit/docs/cryptography_3_discrete_logarithms_in_cryptography.pdf


DIFFIE-HELLMAN KEY EXCHANGE

• User A & User B agrees on g and p, where g and p are primes

• User A secretly chooses a, send A = ga mod p
• User B secretly chooses b, send B = gb mod p

• User A receives B, compute Ba = (gb)a mod p = gab mod p
• User B receives A, compute Ab = (ga)b mod p = gab mod p

• gab mod p is our secret

44



DIFFIE-HELLMAN KEY EXCHANGE

• gab mod p is our secret

• Suppose:
− Attacker knows g, p, A = ga mod p and B = gb mod p
− A+B = (ga + gb) mod p
− AB = g(a+b) mod p

• Security:
− Hard to compute gab from those values
− Discrete logarithm; can you guess a from A = ga mod p
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DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS
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DIFFIE-HELLMAN KEY EXCHANGE EXAMPLE

• g = 5, p = 23

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10

• B4 = 104 mod 23 = 10000 mod 23 = 18
• A3 = 43 mod 23 = 64 mod 23 = 18
• 5(4*3) = 512 mod 23 = 18

47



DIFFIE-HELLMAN KEY EXCHANGE: IMPLICATIONS

• Users are agreeing on two prime numbers
− g, p

• User A chooses any integer a, nobody knows it
• User B chooses any integer b, nobody knows it

• By sharing ga mod P and gb mod p
− Both shares gab mod P without leaking a nor b

48

Two entities can interactively share a secret 
without directly leaking the secrets to others



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Suppose A and B wants to share a secret
− g = 5, p = 23
− A chooses a = 4

• A = 54 mod 23 = 625 mod 23 = 4
− B chooses b = 3

• B = 53 mod 23 = 125 mod 23 = 10
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4

10



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Suppose C intercepts communication between A and B
− A chooses a = 4

• A = 54 mod 23 = 625 mod 23 = 4
− B chooses b = 3

• B = 53 mod 23 = 125 mod 23 = 10
− C chooses c = 5

• C = 55 mod 23 = 3125 mod 23 = 20

• C sends 20 to both A and B

50

4

1020

20



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4
− Ca = 204 mod 23 = 160000 mod 23 = 12

• C chooses c = 5
− C = 55 mod 23 = 3125 mod 23 = 20
− Ac = 45 mod 23 = 1024 mod 23 = 12

• C shares a secret of 12 with A

51

4

1020

20

Shared 12



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10
− Cb = 203 mod 23 = 8000 mod 23 = 19

• C chooses c = 5
− C = 55 mod 23 = 3125 mod 23 = 20
− Bc = 105 mod 23 = 100000 mod 23 = 19

• C shares a secret of 19 with B
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1020

20

Shared 19

Shared 12



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Whenever A sends a message
− Decrypt with 12, read it!
− Encrypt with 19, send to B!

• Whenever B sends a message
− Decrypt with 19, read it!
− Encrypt with 12, send to A!

53
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1020

20

Shared 19

Shared 12

Diffie-Hellman is susceptible to the
Man-in-the-Middle (MITM) attack!



SUMMARY: SECURE INTERNET COMMUNICATION

• Authentication
− Get the certificate of each entity
− Verify their public key
− Using certificate trust chain!

• Key-exchange
− A computes ga mod p, and sign that with A’s private key
− B computes gb mod p, and sign that with B’s private key
− Both can verify the identity of each and then share

• gab mod p
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We Can Defeat MITM



SUMMARY: SECURE INTERNET COMMUNICATION

• Confidentiality
− Run SHA-256(‘cipher key’ + gab mod p)
− Use that as the key for the block cipher
− e.g., AES-256-CBC

• Integrity
− Run SHA-256(‘mac key’ + gab mod p)
− Use that as the key for HMAC
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A Communication Channel with 
Authenticity, Confidentiality, and Integrity

Has Been Established :)

IV Ciphertext with padding HMAC



MICRO-LABS (WEEK 4)

• raw-rsa
• raw-dh
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Thank You!
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