
Secure AI Systems Lab

CS 370: INTRODUCTION TO SECURITY
04.27: DIGITAL CERTIFICATE, DIFFIE-HELLMAN

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu



TOPICS FOR TODAY

• Digital certificate
− What is it?
− What problem does it solve?
− How to create a digital certificate?
− How does it make the Internet secure?

• Diffie-Hellman
− What is it?
− What problem does it solve?
− What is the weakness of DH?
− How can we address the weakness?

Secure AI Systems Lab :: CS 344 - Operating Systems I 2



DIGITAL CERTIFICATE: MOTIVATION

• An example scenario:
− Suppose the oregonstate.edu server has the public/private key
− You want to connect to the website securely

− Confidentiality: comes from the Block Cipher that we will use
− Integrity: comes from HMAC

• Where’s authenticity?
− How do you know the other end is oregonstate.edu?

3

Plaintext

IV Ciphertext with padding HMAC



HOW CAN WE CHECK THE AUTHENTICITY?

4

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!



HOW CAN WE CHECK THE AUTHENTICITY?

5

Knock, knock, who’s this?

oregonstate.edu, just believe what I said!

• Can we check the other end is the one that we want to talk with?

We Need Some Ways to Check If They Are OSU (Authenticity)!



HOW DO WE DO THAT IN THE REAL-LIFE?

6

www.oregonstate.edu
0x83823787832a87b876

e67fe67e6da



HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 
− Need information that we can use to verify the sender

• Solution
− Let’s do this with RSA cryptography algorithm
− Let “oregonstate.edu” publicize the public key
− Let “oregonstate.edu” share their info. and signed by their private key

7



RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

Secure AI Systems Lab :: CS 370 - Introduction to Security 8



RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

Secure AI Systems Lab :: CS 370 - Introduction to Security 9

RSA

M: SH’s MSG

S: 0x12f573bde2



RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for “signing”
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

Secure AI Systems Lab :: CS 370 - Introduction to Security 10

RSA

M: SH’s MSG

S: 0x12f573bde2



RECAP: RSA AND DIGITAL SIGNATURE

• Digital signature
− A mathematical scheme for verifying the authenticity of digital messages
− RSA can be used for “signing”

• Encryption and decryption for digital signature
− Encryption is applying the private exponent to a plaintext: C = Md mod N
− Decryption is applying the public exponent to a ciphertext: M = Ce mod N

Secure AI Systems Lab :: CS 370 - Introduction to Security 11

RSA

M’s from “SH”

M: SH’s MSG

S: 0x12f573bde2



HOW CAN WE DO THIS FOR ONLINE COMMUNICATION?

• Intuition
− Need an identification mechanism 
− Need information that we can use to verify the sender

• Solution: Public Key Infrastructure (PKI)
− Let’s do this with RSA cryptography algorithm
− Let “oregonstate.edu” publicize the public key
− Let “oregonstate.edu” share their info. and signed by their private key

(= we create a digital certificate)

12



THE INFO: DIGITAL CERTIFICATE

• A file that contains
− Entity info (CN)
− Issuer info (CN)
− Public key
− Signature

13



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key
− Signature (proving that I have the public key)

14

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(using beaver’s private key)



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key
− Signature (proving that I have the public key)

15

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information
− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))

16



HOW TO CREATE A DIGITAL CERTIFICATE?

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information
− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))

17

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key



HOW TO CREATE A DIGITAL CERTIFICATE?

• Requester prepares a certificate request
− Entity information
− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information
− Get a SHA-256 fingerprint of the certificate
− Sign the fingerprint (with issuer’s private key)
RSA_encrypt(private_key, SHA-256(certificate))

• Anyone with the public key can verify the result
− Get issuer’s public key from their certificate

18



CERTIFICATION CREATION DETAILS: STEP 1

• The certificate requesting entity fills
− Entity information
− Public Key

• Entity:
− For google, its *.google.com
− Can be your website address

• *.secure-ai.systems
− also has a certificate

19

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(with beaver’s private key)



CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity

• Their identification
• Owning the target domain name
• Owning the public key

− The signature
• Decrypt the signature with public key
• It must be the same as SHA256 sum
• It proves their holding the private key

20

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
(with beaver’s private key)



CERTIFICATION CREATION DETAILS: STEP 2

21

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification
• Owning the target domain name
• etc…

− Then, fill issuer information
• Issuer information
• Issuer public key

CN = oregonstate.edu
Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff



CERTIFICATION CREATION DETAILS: STEP 2

22

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification
• Owning the target domain name
• etc…

− Then, fill issuer information
• Issuer information
• Issuer public key

− and then, sign the certificate
• Get SHA-256 of the certificate
• Attach it as a signature!

CN = oregonstate.edu
Certificate
CN: oregonstate.edu
Will use for:

*.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
(beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
Signature: 0xffeeddccbbaa00112233445566778899

(InCommon RSA’s private key)



THE CERTIFICATE ISSUED

• Now InCommon RSA verified
− oregonstate.edu is owned by
− Oregon State University
− With a specific Public Key

23



RECAP: OSU CERTIFICATE

• OSU owns “oregonstate.edu”
− Verified by InCommon RSA

• Verification of the certificate
− Use InCommon RSA’s public key
− Where is it? It is written in InCommon RSA’s certificate

• But InCommon RSA, who will verify their identity?
− InCommon RSA verifies “oregonstate.edu”
− Who will verify InCommon RSA?

24



LET’S SEE IT FROM THE BROWSER

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

25



TRUST CHAIN

26

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN – CONT’D

27

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN – CONT’D

28

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self



TRUST CHAIN IN REAL-LIFE

• An example:
− Student
− Oregon resident
− U.S. Citizen

• When issuing the student ID
− We verify your Oregon ID…

29



TRUST CHAIN IN REAL-LIFE

• An example:
− Student
− Oregon resident
− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

30



TRUST CHAIN IN REAL-LIFE

• An example:
− Student
− Oregon resident
− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..

31



TRUST CHAIN IN REAL-LIFE

• An example:
− Student
− Oregon resident
− U.S. Citizen

• When issuing the student ID
− Verify your Oregon ID…

• When issuing the Oregon Driver’s License
− Require either one of your birth certificate, previous Driver’s License, or U.S. passport

• When issuing the U.S. passport
− Require your birth certificate or previously issued passport..

32

We need someone to verify the 
originality of the proving document…



ROOT CERTIFICATE AUTHORITY (ROOT CA ≈ US IN PREV. EXAMPLE)

• Define small set of trustworthy certificate authorities
− Private companies are authorized by some jurisdiction to run the CA company

• Google Trust Service (GTS CA)
• DigiCert
• Verisign
• etc..

• Trust their self-signed certificate
− Stored in almost every computer machines

33



PUBLIC KEY INFRASTRUCTURE (PKI)

34

oregonstate.edu

InCommon

USERTrust

• An Infrastructure that provides public key with certificate chain

• Trust anchor: Root CA
− Set a small set of entities use self-signed cert

• Verify the certificate chain!
− Must verify the entire chain



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

35

Hey, are you oregonstate.edu?
Give me your certificate



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

36

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert (certificate)



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

37

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

Oregonstate verified by InCommon RSA



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

38

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

InCommon RSA verified by USERTrust RSA



LET’S VERIFY OREGONSTATE.EDU

• Using the digital certificate!

39

Hey, are you oregonstate.edu?
Give me your certificate

Yes, I am oregonstate.edu!
Here’s my cert

USERTrust RSA is self-verified (ROOT CA)



TOPICS FOR TODAY

• Digital certificate
− What is it?
− What problem does it solve?
− How to create a digital certificate?
− How does it make the Internet secure?

• Diffie-Hellman
− What is it?
− What problem does it solve?
− What is the weakness of DH?
− How can we address the weakness?

Secure AI Systems Lab :: CS 344 - Operating Systems I 40



DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel
− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm

41



DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

42

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p



DIFFIE-HELLMAN KEY EXCHANGE

• Diffie-Hellman
− A method of securely exchanging cryptographic keys over a public channel
− Two parties can establish a shared secret (private) key over an insecure channel

• Security:
− Based on the difficulty of mathematical problem of discrete logarithm
− Example:

• Given g, a, b, A, B, where
• ga mod p = A
• gb mod p = B
• Can you compute gab mod p?

43

https://web.northeastern.edu/dummit/docs/cryptography_3_discrete_logarithms_in_cryptography.pdf


DIFFIE-HELLMAN KEY EXCHANGE

• User A & User B agrees on g and p, where g and p are primes

• User A secretly chooses a, send A = ga mod p
• User B secretly chooses b, send B = gb mod p

• User A receives B, compute Ba = (gb)a mod p = gab mod p
• User B receives A, compute Ab = (ga)b mod p = gab mod p

• gab mod p is our secret

44



DIFFIE-HELLMAN KEY EXCHANGE

• gab mod p is our secret

• Suppose:
− Attacker knows g, p, A = ga mod p and B = gb mod p
− A+B = (ga + gb) mod p
− AB = g(a+b) mod p

• Security:
− Hard to compute gab from those values
− Discrete logarithm; can you guess a from A = ga mod p

45



DIFFIE-HELLMAN KEY EXCHANGE IN GRAPHICS

46

g, p g, p

a b

ga mod p

ga mod p

gb mod p

gb mod p

a b

gab mod p gab mod p



DIFFIE-HELLMAN KEY EXCHANGE EXAMPLE

• g = 5, p = 23

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10

• B4 = 104 mod 23 = 10000 mod 23 = 18
• A3 = 43 mod 23 = 64 mod 23 = 18
• 5(4*3) = 512 mod 23 = 18

47



DIFFIE-HELLMAN KEY EXCHANGE: IMPLICATIONS

• Users are agreeing on two prime numbers
− g, p

• User A chooses any integer a, nobody knows it
• User B chooses any integer b, nobody knows it

• By sharing ga mod P and gb mod p
− Both shares gab mod P without leaking a nor b

48

Two entities can interactively share a secret 
without directly leaking the secrets to others



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Suppose A and B wants to share a secret
− g = 5, p = 23
− A chooses a = 4

• A = 54 mod 23 = 625 mod 23 = 4
− B chooses b = 3

• B = 53 mod 23 = 125 mod 23 = 10

49

4

10



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Suppose C intercepts communication between A and B
− A chooses a = 4

• A = 54 mod 23 = 625 mod 23 = 4
− B chooses b = 3

• B = 53 mod 23 = 125 mod 23 = 10
− C chooses c = 5

• C = 55 mod 23 = 3125 mod 23 = 20

• C sends 20 to both A and B

50

4

1020

20



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• A chooses a = 4
− A = 54 mod 23 = 625 mod 23 = 4
− Ca = 204 mod 23 = 160000 mod 23 = 12

• C chooses c = 5
− C = 55 mod 23 = 3125 mod 23 = 20
− Ac = 45 mod 23 = 1024 mod 23 = 12

• C shares a secret of 12 with A

51

4

1020

20

Shared 12



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• B chooses b = 3
− B = 53 mod 23 = 125 mod 23 = 10
− Cb = 203 mod 23 = 8000 mod 23 = 19

• C chooses c = 5
− C = 55 mod 23 = 3125 mod 23 = 20
− Bc = 105 mod 23 = 100000 mod 23 = 19

• C shares a secret of 19 with B

52

4

1020

20

Shared 19

Shared 12



DIFFIE-HELLMAN WEAKNESS: MAN-IN-THE-MIDDLE

• Whenever A sends a message
− Decrypt with 12, read it!
− Encrypt with 19, send to B!

• Whenever B sends a message
− Decrypt with 19, read it!
− Encrypt with 12, send to A!

53

4

1020

20

Shared 19

Shared 12

Diffie-Hellman is susceptible to the
Man-in-the-Middle (MITM) attack!



SUMMARY: SECURE INTERNET COMMUNICATION

• Authentication
− Get the certificate of each entity
− Verify their public key
− Using certificate trust chain!

• Key-exchange
− A computes ga mod p, and sign that with A’s private key
− B computes gb mod p, and sign that with B’s private key
− Both can verify the identity of each and then share

• gab mod p

54

We Can Defeat MITM



SUMMARY: SECURE INTERNET COMMUNICATION

• Confidentiality
− Run SHA-256(‘cipher key’ + gab mod p)
− Use that as the key for the block cipher
− e.g., AES-256-CBC

• Integrity
− Run SHA-256(‘mac key’ + gab mod p)
− Use that as the key for HMAC

55

A Communication Channel with 
Authenticity, Confidentiality, and Integrity

Has Been Established :)

IV Ciphertext with padding HMAC



MICRO-LABS (WEEK 4)

• raw-rsa
• raw-dh

56



Thank You!

Secure AI Systems Lab

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu


