
Secure AI Systems Lab

CS 370: INTRODUCTION TO SECURITY
05.02: SSL AND TLS

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

MICRO-LABS: CBC-ATTACK: BORING TO SUPERB

• Job 3
− Create a copy of this data with
− The change from ‘boring’ to ‘superb’
− Use template.py (marked as XXX)

• Hint
− Find a way to modify the plaintext of the 5th block

Secure AI Systems Lab :: CS 344 - Operating Systems I 2

This should be modified!

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

The sky is blue,

The sky is blue,

cs370 crypto is

cs370 crypto is

a boring class.

a boring class

is_admin=0

0000000000000000

KKK K

Passwordpass.. ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3

MICRO-LABS: CBC-ATTACK: BORING TO SUPERB

• We have
− C1 ^ D2 = ‘boring’
− C1’ ^ D2 = ‘superb’
− where C1’ is the modified ciphertext we want

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

This should be modified!

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

Block
Cipher-1

The sky is blue,

The sky is blue,

cs370 crypto is

cs370 crypto is

a boring class.

a boring class

is_admin=0

0000000000000000

KKK K

Passwordpass.. ⊕
IV

⊕ ⊕ ⊕

P0 = IV ⊕ D0

C0 C1 C2 C3

P1 = C0 ⊕ D1 P2 = C1 ⊕ D2 P3 = C2 ⊕ D3

MICRO-LABS: CBC-ATTACK: BORING TO SUPERB

• We have
− C1 ^ D2 = ‘boring’
− C1’ ^ D2 = ‘superb’
− where C1’ is the modified ciphertext we want

• Let’s XOR these two:
− C1 ^ D2 ^ C1’ ^ D2 = ‘boring’ ^ ‘superb’ (we know XOR is associative)
− C1 ^ C1’ ^ (D2 ^ D2) = ‘boring’ ^ ‘superb’ (we know a ^ a = 0)
− C1 ^ C1’ ^ 0 = ‘boring’ ^ ‘superb’ (we know a ^ 0 = a)
− C1 ^ (C1 ^ C1’) = C1 ^ (‘boring’ ^ ‘superb’)
− (C1 ^ C1) ^ C1’ = C1 ^ (‘boring’ ^ ‘superb’)
− C1’ = C1 ^ (‘boring’ ^ ‘superb’)

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

RECAP

• How can we secure the Internet communication?
− How can we make sure we’re talking to the right person?
− How can we establish a secure channel over an insecure channel?
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

5

RECAP: DIGITAL CERTIFICATE

• How can we secure the Internet communication?
− Authentication: a digital certificate
− How can we establish a secure channel over an insecure channel?
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

• A file that contains:
− Entity info (CN)
− Issuer info (CN)
− Public key
− Signature

6

RECAP: DIGITAL CERTIFICATE – TRUST CHAIN

• How can we secure the Internet communication?
− Authentication: a digital certificate
− How can we establish a secure channel over an insecure channel?
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

• A file that contains:
− Entity info (CN)
− Issuer info (CN)
− Public key
− Signature

• Public-key infrastructure (PKI)

7

RECAP: DIGITAL CERTIFICATE – TRUST CHAIN (CONT’D)

• How can we secure the Internet communication?
− Authentication: a digital certificate

• Public-key infrastructure (PKI)
− oregonstate.edu

• Verified by InCommon RSA

− InCommon RSA Server CA
• Verified by USERTrust RSA

− USERTrust RSA CA
• Verified by itself (Root CA)

8

RECAP

• How can we secure the Internet communication?
− Authentication: a digital certificate
− How can we establish a secure channel over an insecure channel?
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

9

RECAP: DIFFIE-HELLMAN

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

• Diffie-Hellman
− Given:

• g and P (shared secret; public) and a and b (secrets; private)
− Compute:

• ga mod p = A and gb mod p = B and exchange them
• (gb)a mod p = (ga)b mod p = gab mod p

− Use gab mod p as a shared secret

10

RECAP: DIFFIE-HELLMAN

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

• Diffie-Hellman
− Given:

• g and P (shared secret; public) and a and b (secrets; private)
− Compute:

• ga mod p = A and gb mod p = B and exchange them
• (gb)a mod p = (ga)b mod p = gab mod p

− Use gab mod p as a shared secret

11

RECAP

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− How can we encrypt/decrypt the message we send/receive?
− How can we ensure the message is not altered by an adversary?

12

RECAP: BLOCK CIPHER

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− Confidentiality: ex. CBC with SHA-256(‘cipher key’ + gab mod p) as a key
− How can we ensure the message is not altered by an adversary?

13

0000000000000

Block
Cipher

0101011101010

0000000000001

Block
Cipher

1100011110101

0000000000000

Block
Cipher

0001110111011

0000000000001

Block
Cipher

1101011101110

K K K K

101011101010 ⊕ ⊕ ⊕ ⊕
IV

IV ⊕ P0 C0 ⊕ P1

P0 P1 P2 P3

C1 ⊕ P2 C2 ⊕ P3

C0 C1 C2 C3

RECAP: BLOCK CIPHER

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− Confidentiality: ex. CBC with SHA-256(‘cipher key’ + gab mod p) as a key
− How can we ensure the message is not altered by an adversary?

14

RECAP: BLOCK CIPHER

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− Confidentiality: ex. CBC with SHA-256(‘cipher key’ + gab mod p) as a key
− Integrity: ex. SHA-256(‘MAC key’ + gab mod p) as the key for HMAC

− HMAC = SHA-256(SHA-256(‘MAC key’ + gab mod p) || IV+Block0+Block1)
− : 7624e1f89ce009f8ec7e6e39781a42c0a27fa38f94db4f05f78b0f301007e06a

15

IV Block 0 Block 1 HMAC (key || IV+Block0+Block1)

RECAP

• How can we secure the Internet communication?
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− Confidentiality: ex. CBC with SHA-256(‘cipher key’ + gab mod p) as a key
− Integrity: ex. SHA-256(‘MAC key’ + gab mod p) as the key for HMAC

16

A Communication Channel with Authenticity, Confidentiality, and Integrity!

TOPICS FOR TODAY

• SSL and TLS security
− How secure is the Internet?
− How can we implement secure communication channels?
− How can we establish such channels between two parties?
− How can we minimize the impact of security incidents?
− How do we use to achieve such a goal (in practice)?

17

THE INTERNET

• The Net
− A system of computer networks; a network of networks
− Uses the Internet protocol suite (TCP/IP) to communicate

• Design principle
− Network is complex, O(N2)
− Manage small network, O(n2)
− Manage network of networks O(m2)
− N >>>>> m,n
− Make it simple!

18

1https://www.cs.utexas.edu/~mitra/csFall2018/cs329/lectures/fig1.gif

RECAP: OSI MODEL

• Open Internet Interface (OSI) model

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

Process Process

socket socket

read/write

Host A Host B

OS OSOSI Model
(offers abstractions)

OSI Model
(offers abstractions)

read/write

Hello

OSI Model
(offers abstractions)

RECAP: OSI 7-LAYER MODEL

• Open Internet Interface (OSI) model

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

Process Process

socket socket

Host A Host B

Physical

Data-link

Network

Transport

Session

Presentation

Application

read/write

Hello

OSI Model
(offers abstractions)

RECAP: TCP/IP 4-LAYER MODEL

• TCP/IP 4-layer model

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

Process Process

socket socket

Host A Host B

Physical (or Link)

Internet

Transport

Application

read/write

Hello

RECAP: PACKET ENCAPSULATION

• TCP/IP 4-layer model (OSI 7-layer has more…)

Secure AI Systems Lab :: CS 344 - Operating Systems I 22

Process Process

socket socket

Host A Host B

Hello

Physical (or Link)

Internet

Transport

Application

Physical (or Link)

Internet

Transport

Application

read/write

TCP Hello

IP TCP Hello

ETH IP TCP Hello ETH IP TCP Hello

IP TCP Hello

TCP Hello

Hello

RECAP: OSI 7-LAYER MODEL

• Open Internet Interface (OSI) model

Secure AI Systems Lab :: CS 344 - Operating Systems I 23

Process

socket

Host A

Physical

Data-link

Network

Transport

Session

Presentation

Application Application protocol definition (e.g., HTTPS)

Application encryption and/or compression

Establish and terminate network communication

Divide data into segments (or error corrections)

Logical addressing, packet creation, or routing

MAC addressing; formatting data into frames

Electric signaling
Media

IP

TCP

TLS

THE INTERNET: PACKET ROUTING

24

you

me

THE INTERNET: (NO) SECURITY

25

• No security (in TCP communication)

− Any router in the middle can see
any packet content :(

THE INTERNET: (NO) SECURITY

26

• Routers:
− Decide where the packet should go as a next step
− What if

• the router in the middle sends a packet to weird location?
• the router(s) are malicious (there is no such restriction)? you

me

We Cannot Establish Trust in Routers

TOPICS FOR TODAY

• SSL and TLS security
− The Internet is not secure
− How can we implement secure communication channels?
− How can we establish such channels between two parties?
− How can we minimize the impact of security incidents?
− How do we use to achieve such a goal (in practice)?

27

THE INTERNET WITHOUT SECURITY

28

Search “Dog”

Everybody in the Middle Knows That I Searched ‘dogs’
and They Also Know the Search Result… Ugh…

THE INTERNET WITH A SECURE MECHANISM (SSL/TLS)

29

Search “Dog”

Check certificate, exchange keys, apply encryption with HMAC

Middle mans never know
DH exchange keys!!

I know these two are
communicating but not
about the secret key…0x1ce42780dfa1cea

089a9ea00de059ef5

Search “Dog”

The Middlemen Will Only See the Encrypted Contents
They Will Never Know the Secret Key …

• SSL/TLS
− Developed by Netscape in 1995
− Standardized by IETF as TLS
− https://www.ietf.org/rfc/rfc2246.txt

SSL/TLS: SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

30

https://www.ietf.org/rfc/rfc2246.txt

• SSL/TLS
− Developed by Netscape in 1995
− Standardized by IETF as TLS
− https://www.ietf.org/rfc/rfc2246.txt

• “Transport Layer” Security
− Why?

SSL/TLS: SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

31

https://www.ietf.org/rfc/rfc2246.txt

SSL/TLS: TRANSPORT LAYER SECURITY, WHY?

• Independent from the application running on a host

Secure AI Systems Lab :: CS 344 - Operating Systems I 32

Process Process

socket socket

Host A Host B

Physical

Data-link

Network

Transport

Session

Presentation

Application

Physical (or Link)

Internet

Transport

Application

comm.

SSL/TLS: BENEFITS

• Enable to
− Establish secure comm channels btw two ends (hosts) on the Internet

• Client <-> Server (ex. OSU login)
• Server <-> Server (ex. Amazon requests a transaction with your credit card)
• Client <-> Client (ex. chat applications)

− Verify the server entity
• Use a digital certificate

• end-to-end secure communication channels
− Authentication: a digital certificate
− Key-exchange: Diffie-Hellman key exchange
− Confidentiality: Block ciphers
− Integrity: HMAC / MAC

33

TOPICS FOR TODAY

• SSL and TLS security
− The Internet is not secure
− SSL/TLS for secure communications
− How can we establish such channels between two parties?
− How can we minimize the impact of security incidents?
− How do we use to achieve such a goal (in practice)?

34

SSL/TLS: HANDSHAKING

Client (You)
• 1. Client hello

− Send version, random number, available
cipher suite, etc..

35

(google.com) Server

• 2. Server hello
• Sends server random,

version, choose cipher, etc.

• 3. Server Certificate
• Send certificate to the

client

SSL/TLS: STEP I – CLIENT HELLO

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

36

SSL/TLS: STEP I – CLIENT HELLO

• It sends supported cipher suites:
− TLS_ECDHE_RSA_WITH

AES_128_GCM_SHA256
ECDHE_RSA_AES_128_GCM_SHA256

37

NOTE: ECDHE_RSA_WITH_AES_128_GCM_SHA256

• ECDHE
− Key exchange algorithm. Elliptic Curve Diffie—Hellman Ephemeral

• RSA
− Digital Signature algorithm. We use this for checking authenticity

• AES-128-GCM
− Symmetric cipher algorithm/mode. We will use AES-128 in GCM mode

• SHA256
− HMAC algorithm. We will use SHA256 to construct an HMAC

38

SSL/TLS: STEP II – SERVER HELLO

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

• The server choose a cipher based on the client’s availability
− Chosen: TLS_ECDHE_RSA_AES_128_GCM_SHA256

39

SSL/TLS: STEP III – SERVER CERTIFICATE

• The first message a client sends to the server
− It sends an SSL/TLS version, a random number, an available cipher suite, …

• The server choose a cipher based on the client’s availability
− Chosen: TLS_ECDHE_RSA_AES_128_GCM_SHA256

• The server next sends the certificate information to the client
− It sends a full chain (PKI) of digital certificates

40

SSL/TLS: STEP IV – KEY EXCHANGE / VERIFYING SIGNATURE

• Key exchange
− The client knows the server’s public key written in their certificate
− The client chooses a random key and encrypt that with the server’s public key
− The encrypted key will be sent to the server
− It’s only the server who can decrypt the key (good)

41

Are We Secure Now? Can We See A Potential Security Issues?

SSL/TLS: POTENTIAL SECURITY PROBLEM

• Key exchange
− The client knows the server’s public key written in their certificate
− The client chooses a random key and encrypt that with the server’s public key
− The encrypted key will be sent to the server
− It’s only the server who can decrypt the key (good)

• Suppose:
− 3 years later, the server’s private key is stolen
− From then, the attacker can decrypt the all the data (private key, messages, …)
− What if the attacker also has all the encrypted messages before the breach?

42

TOPICS FOR TODAY

• SSL and TLS security
− The Internet is not secure
− SSL/TLS for secure communications
− SSL/TLS handshakes (hello-s)
− How can we minimize the impact of security incidents?
− How do we use to achieve such a goal (in practice)?

43

SSL/TLS: REQUIRES FORWARD SECURITY

• Forward Secrecy / Perfect Forward Secrecy
− We want to keep all the communication secure
− Even if the server’s private key (i.e., the long-term key) has been breached

• Example of such breaches
− Heartbleed (https://heartbleed.com/): CVE-2014-0160

44

https://heartbleed.com/

SSL/TLS: SOLUTION – EPHEMERAL DIFFIE-HELLMAN

• The key idea:
− Do not use a fixed private value for all the DH
− This can lead to a serious information breach (stolen private key)

• Ephemeral DH
− Generate the private value every time we make a connection
− Never reuse the value

• User A secretly chooses a, send A = ga mod p
• User B secretly chooses b, send B = gb mod p
• User A and B will choose different a and b for the next time

45

SSL/TLS: ECDHE

• Elliptic-curve Diffie-Hellman Ephemeral (ECDHE)
− Both the client and server will generate new a and b, respectively
− Make it difficult for an adversary to infer the shared secret

even if the session is compromised (they don’t know b for other sessions)

46

https://www.youtube.com/watch?v=F3zzNa42-tQ

SSL/TLS: HANDSHAKING

Client (You)
• 1. Client hello

47

(google.com) Server

• 2. Server hello
• 3. Server Certificate

• 4. Server Key Exchange
• Shares DH material,

signed by the public key

• 5. Server Hello Done

SSL/TLS: STEP IV – KEY EXCHANGE

• The server sends ECDHE material to the client
− ECDHE public value (pubkey) is signed by the RSA private key
− The public key is available in the certificate

48

SSL/TLS: STEP V – SERVER HELLO DONE

• The server sends ECDHE material to the client
− ECDHE public value (pubkey) is signed by the RSA private key
− The public key is available in the certificate

• The server hello done
− Indicate that the server has finished sending required values to the client

49

SSL/TLS: HANDSHAKING

Client (You)
• 1. Client hello

50

(google.com) Server

• 2. Server hello
• 3. Server Certificate

• 4. Server Key Exchange
• Shares DH material, signed

by the public key

• 5. Server Hello DoneNow, the Client Can Verify Server
Signature and Share a Secret via DH!

RECAP: DIFFIE-HELLMAN’S WEAKNESS TO MAN-IN-THE-MIDDLE

• Suppose C intercepts communication between A and B
− A chooses a = 4

• A = 54 mod 23 = 625 mod 23 = 4
− B chooses b = 3

• B = 53 mod 23 = 125 mod 23 = 10
− C chooses c = 5

• C = 55 mod 23 = 3125 mod 23 = 20

• C sends 20 to both A and B

51

4

1020

20

SSL/TLS: HANDSHAKING

52

Client (You)

• 6. Client Key Exchange
− Shares DH material after verifying server signature

for server’s DH material

• 7. Change Cipher Spec
• 8. Encrypted Handshake Message

(google.com) Server

• 5. Server Hello Done

Previous steps (omitted)

SSL/TLS: STEP VI – CLIENT KEY EXCHANGE

• The client also sends ECDHE material to the server
− After this, two parties will share a secret
− We will run the encryption and MAC key by using the shared secret

53

SSL/TLS: STEP VI – CLIENT GENERATES A SESSION KEY

• Now the client knows both ‘a’ and ‘b’ of ECDHE key exchange
− The client can compute the shared secret
− The client then computes the following keys from the shared secret

54

These are from
1. Client Hello and
2. Server Hello

SSL/TLS: STEP VII – CHANGE CIPHER SPEC (CLIENT)

• Secure communication:
− The client sends the server a message
− that now both should use encrypted communication after this point

55

Now, We Encrypt Messages and Generate MACs for the Client’s!

SSL/TLS: STEP VIII – ENCRYPTED HANDSHAKE MESSAGE

• The server asks
− the encrypted versions of previous messages
− to verify whether the client generated the keys correctly

56

SSL/TLS: STEP VIII – ENCRYPTED HANDSHAKE MESSAGE

• The server asks
− the encrypted versions of previous messages
− to verify whether the client generated the keys correctly

57

SSL/TLS: HANDSHAKING

58

Client (You)

• 6. Client Key Exchange
− Shares DH material after verifying server signature

for server’s DH material

• 7. Change Cipher Spec
• 8. Encrypted Handshake Message

(google.com) Server

• 5. Server Hello Done

• 9. Change Cipher Spec

• 10. Encrypted Handshake Message

Previous steps (omitted)

SSL/TLS: STEP XV – CHECK CLIENT’S ENCRYPTED HANDSHAKE MESSAGES

• The server verifies the client’s encrypted handshake messages
− After generating client_write_key
− Decrypt the message
− Compute the same value
− Compare!

59

• The server lets the client know
− that we will use encrypted communication after this message

SSL/TLS: STEP XV – CHANGE CIPHER SPEC (SERVER)

60

Now, We Encrypt Messages and Generate MACs for the Server’s!

• The client asks
− the encrypted version of previous messages
− to verify whether the server generated keys correctly

SSL/TLS: STEP X – ENCRYPTED HANDSHAKE MESSAGE

61

SSL/TLS: STEP XI - SENDING APPLICATION DATA

• Now, the server and client
− will send encrypted data to the client
− both will always send [encrypted data] [MAC]

• The server will use server_write_key and server_write_mac_key
• The client will use client_write_key and client_write_mac_key

62

TEASER: HOW DO WE USE SSL/TLS?

• HTTP(s)
− HTTP: Hypertext Transfer Protocol
− A network protocol for accessing World Wide Web

• http:// vs. https://
− http:// ß this directive let web browsers connect directly via HTTP
− https:// ß this directive let web browsers connect HTTP via TLS

63

TOPICS FOR TODAY

• SSL and TLS security
− The Internet is not secure
− SSL/TLS for secure communications
− SSL/TLS handshakes (hello-s)
− (Perfect) Forward Security
− How do we use to achieve such a goal (in practice)? (next lecture)

64

Thank You!

Secure AI Systems Lab

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

