
Secure AI Systems Lab

CS 370: INTRODUCTION TO SECURITY
05.25: SOFTWARE SECURITY PRELIM.

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 2

RUNNING A C PROGRAM: COMPILER AND ASSEMBLER

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 3

int add_one(int a) {
int added = a + 1;
return added;

}

C code

add_one:
pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl 8(%ebp), %eax
movl %eax, -4(%ebp)
incl -4(%ebp)
movl -4(%ebp), %eax
leave
ret

Assembly code
(RISC-V, x86)

0x55 0x89 0xe5 0x83
0xec 0x04 0x8b 0x45
0x08 0x89 0x45 0xfc
0x45 0x89 0xe8 0xc9
0xc3

Machine code
(raw bits)

Compiler Assembler

RUNNING A C PROGRAM: LINKER AND LOADER

• To run a C program:
− Compiler : Converts C code into assembly code (RISC-V, x86)
− Assembler : Converts assembly code into machine code (raw bits)
− Linker : Deals with dependencies and libraries (learn more in CS444)
− Loader : Sets up memory space and runs the machine code

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 4

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 5

MEMORY LAYOUT

• C memory layout
− At runtime, the loader tells an OS to give your program a big blob of memory

• On a 32-bit system, the memory has 32-bit addresses
• On a 64-bit system, the memory has 64-bit addresses
• ex. the “solve” server is the 64-bit system

− In this lecture slides, we consider a 32-bit system
− Each address refers to 1 byte, which means you have 232 bytes of memory

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 6

address
0x00000000

address
0xFFFFFFFF

MEMORY LAYOUT

• C memory layout
− Drawn vertically for ease of drawing
− But memory is just a long array of bytes

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 7

address 0x00000000

address 0xFFFFFFFF

Higher addresses

Lower addresses

4 bytes

MEMORY LAYOUT: X86

• Process has 4 segments
− Code (or text)

• The program code itself
− Data

• Static variables
• Allocated when the program is started

− Heap
• Dynamically allocated memory using malloc and free
• Heap grows upwards

− Stack:
• Local variables and stack frames
• Stack grows downwards

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 8

Higher addresses

Lower addresses

Stack

Heap

Data

Code

Grows downwards

Grows upwards

MEMORY LAYOUT: X86

• Registers
− A quickly accessible location on the CPU
− Use names (ebp, esp, eip), not addresses

• Memory: addresses are 32-bit numbers
− This is different from the memory layout

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 9

Higher addresses

Lower addresses

Stack

Heap

Data

Code

Grows downwards

Grows upwards

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 10

X86 ARCHITECTURE: PRELIMINARIES

• x86 architecture
− Most commonly used architecture
− Use little-endian

• The LSB is placed at the first/lowest memory address

− Support variable-length instructions
• If assembled into machine code, instructions can be anywhere from 1 to 16 bytes long
• Some other architectures could support fixed-length instructions (e.g., RISC-V; 4-byte)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 11

X86 ARCHITECTURE: REGISTERS

• x86 registers
− A quickly accessible location (separately) on the CPU
− 8 main general-purpose registers:

• EAX, EBX, ECX, EDX, ESI, EDI: General-purpose
• ESP: Stack pointer
• EBP: Base pointer

− Instruction pointer register: EIP

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 12

X86 ARCHITECTURE: REGISTERS

• x86 registers
− A quickly accessible location (separately) on the CPU
− 8 main general-purpose registers:

• EAX, EBX, ECX, EDX, ESI, EDI: General-purpose
• ESP: Stack pointer
• EBP: Base pointer

− Instruction pointer register: EIP

• Syntax
− Register references are preceded with a percent sign % (e.g., %eax, %esp, %edi)
− Immediates are preceded with a dollar sign $ (e.g., $1, $161, $0x4)
− Memory references use parentheses and can have immediate offsets

• e.g., 8(%esp) dereferences memory 8 bytes above the address contained in ESP

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 13

X86 ARCHITECTURE: ASSEMBLY

• x86 assembly
− Instructions are composed of an opcode and zero or more operands.
− add $0x8 %ebx

− Pseudocode: EBX = EBX + 0x8
− The destination comes last
− The add instruction has two operands; and the destination is an input
− This instruction uses a register and an immediate

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 14

Opcode Source Destination

X86 ARCHITECTURE: ASSEMBLY

• x86 assembly
− Instructions are composed of an opcode and zero or more operands.
− xorl 4(%esi) %eax

− Pseudocode: EAX = EAX ^ *(ESI + 4)
− This is a memory reference:

• The value at 4 bytes above the address in ESI is dereferenced
• XOR’d with EAX
• Stored back into EAX

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 15

Opcode Source Destination

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 16

STACK LAYOUT

• Stack frames
− If code calls a function:

• Memory space is made on the stack for local variables
• The space is known as the stack frame for the function
• The stack frame will be free-ed once the function returns

− The stack makes extra space by growing down
• The stack starts at higher addresses
• Every time your code calls a function, it grows down
• Note:

− Data on the stack, e.g., a string, is still stored from lowest address to highest address.
− “Growing down” only happens when extra memory needs to be allocated.

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 17

STACK LAYOUT

• Stack frames
− To keep track of the current stack frame

• Store two pointers in registers
• The EBP (base pointer) points to

the top of the current stack frame
• The ESP (stack pointer) points to

the bottom of the current stack frame

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 18

...

...

...

...

EBP

ESP
Current sta

ck

frame

STACK LAYOUT

• Stack frames
− To keep track of the current stack frame

• Store two pointers in registers
• The EBP (base pointer) points to

the top of the current stack frame
• The ESP (stack pointer) points to

the bottom of the current stack frame

− Store
• The ebp and esp registers are drawn as arrows

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 19

...

...

Code for foo

Code for main

CO
DE

STACK

CPU Registers

ebp

esp

eip
Current sta

ck

frame

STACK LAYOUT

• Stack frames
− To keep track of the current stack frame

• Store two pointers in registers
• The EBP (base pointer) points to

the top of the current stack frame
• The ESP (stack pointer) points to

the bottom of the current stack frame

− Store (pointers)
• The ebp and esp registers are drawn as arrows
• They are storing the address of where the arrow is pointing
• This works as registers store 32 bits, and addresses are 32 bits

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 20

...

...

Code for foo

Code for main

CO
DE

STACK

CPU Registers

ebp

esp

eip
Current sta

ck

frame

STACK LAYOUT

• Stack frames
− To keep track of the current stack frame

• Store two pointers in registers
• The EBP (base pointer) points to

the top of the current stack frame
• The ESP (stack pointer) points to

the bottom of the current stack frame

− Store (pointers)
• The ebp and esp registers are drawn as arrows
• They are storing the address of where the arrow is pointing
• This works as registers store 32 bits, and addresses are 32 bits

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 21

...

...

Code for foo

Code for main

CO
DE

STACK

CPU Registers

0xbffff320ebp

0xbffff314esp

eip

0xbffff320

0xbffff314

STACK LAYOUT

• Push and pop
− The push instruction adds an element to the stack

• Decrement ESP to allocate more memory on the stack
• Save the new value on the lowest value address of the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 22

EBP

ESP
Current sta

ck

frame

0xcafef00d

EBP

ESP

Current sta
ck

frame

Before push %eax After push %eaxEAX = 0xcafef00d
EBX = ...

EAX = 0xcafef00d
EBX = ...

STACK LAYOUT

• Push and pop
− The pop instruction removes an element from the stack

• Load the value from the lowest value address on the stack and store it in a register
• Increment ESP to deallocate the memory on the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 23

0xcafef00d

EBP

ESP
Current sta

ck

frame

0xcafef00d

EBP

ESP

Current sta
ck

frame

Before pop %eax After pop %eaxEAX = 0x00000000
EBX = ...

EAX = 0xcafef00d
EBX = ...

STACK LAYOUT

• Storing convention
− Local variables are always allocated on the stack
− Individual variables within a stack frame are stored with the first variable at the highest address
− Members of a struct are stored with the first member at the lowest address
− Global variables (not on the stack) are stored with the first variable at the lowest address

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 24

STACK LAYOUT

• Storing convention
− Local variables are always allocated on the stack
− Individual variables within a stack frame are stored with the first variable at the highest address
− Members of a struct are stored with the first member at the lowest address
− Global variables (not on the stack) are stored with the first variable at the lowest address

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 25

struct foo {
 long long f1; // 8 bytes
 int f2; // 4 bytes
 int f3; // 4 bytes
};

void func(void) {
 int a; // 4 bytes
 struct foo b;
 int c; // 4 bytes
}

a

b.f3

b.f2

b.f1

b.f1

c

Higher addresses

Lower addresses

4 bytes

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 26

CALLING CONVENTION: FUNCTION CALLS

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 27

int main() {
int a = 1;
foo();
return 0;

}

Caller

void foo() {
int b = 0;
return;

}

Callee

int main() {
int a = 1;
foo();
return 0;

}

Caller

The caller function (main)
calls the callee function (foo)

The callee function executes and then
returns control to the caller function

Before fn call During fn call After fn returns

CALLING CONVENTION

• x86 convention
− A way for functions to call other functions

(i.e., know what state the processor will return in)
− How to pass arguments

• Arguments are pushed onto the stack in reverse order
• func(val1, val2, val3) will place val3 at the highest memory address, then val2, then val1

− How to receive return values
• Return values are passed in EAX

− Which registers are caller-saved or callee-saved
• Callee-saved: The callee must not change the value of the register when it returns
• Caller-saved : The callee may overwrite the register without saving or restoring it

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 28

CALLING CONVENTION

• x86 convention
− The values in the caller-saved registers to stay unchanged when calling a function

(i.e., If the function returns, the value in these registers should stay the same)
− What if the function wants to change the values in these registers?

• Before calling the function: write these values on the stack
• After the function returns: move the values from the stack back to the registers

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 29

CPU Registers

ebp

esp

eip

0xbffff320

0xbffff314

CALLING CONVENTION

• Calling a function in x86
− Call:

• The ESP and EBP need to shift to create a new stack frame
• The EIP must move to the callee’s code

− Return:
• The ESP, EBP, and EIP must return to their old values

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 30

caller code

callee code

caller code

callee code

caller code

callee code

EBP

Caller frame
ESP

Before fn call

EIP

Stack
Code

EBP

ESP

During fn call

Caller frame

Callee frame

EIP

Stack
Code

Caller frame

After fn call

EBP

ESP

EIP

Stack
Code

X86 FUNCTION CALL DESIGN

• Stack and registers
− If code calls a function, sp-

ace is made on the stack
for local variables

− The space goes away
once the function returns

− The stack starts at higher
addresses and grows down

− Registers are 32-bit (or 4-byte, 1-word) units
of memory located on CPU

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 31

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

The stack grow
s this w

ay

X86 FUNCTION CALL DESIGN

• Word and code segment
− The code segment contains

raw bytes that represent
assembly instructions

− Each row of the diagram is
1 word = 4 bytes = 32 bits

− Addresses increase
as you move up the diagram

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 32

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

Addresses increase this w
ay

X86 FUNCTION CALL DESIGN

• Stack frames
− Use two pointers to tell us

which part of the stack is
being used by the current
function

− This is called a stack frame
− One stack frame corresponds

to one function being called

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 33

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Stack frames
− Use two pointers to tell us

which part of the stack is
being used by the current
function

− This is called a stack frame
− One stack frame corresponds

to one function being called
− The ebp register is used for the top of the stack frame
− The esp register is used for the bottom of the stack frame

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 34

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip
Current sta

ck

frame

X86 FUNCTION CALL DESIGN

• ESP
− esp also denotes the curre-

nt lowest value on the stack
− Everything below esp

is undefined
− If we push a value onto the

stack, esp must adjust to
match the lowest value on the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 35

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip
Current sta

ck

frame

X86 FUNCTION CALL DESIGN

• EIP
− To keep track of what step

we’re at in the instructions
− Use the eip register to store

a pointer to the current ins-
truction

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 36

...

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip
Current sta

ck

frame

X86 FUNCTION CALL DESIGN

• Stack design
− Every time we call a func.,

a new stack frame must be
created

− If the func returns, the stack
frame must be discarded

− Each stack frame needs to
have space for local variables

− Require to design how to pass
arguments to functions using the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 37

Stack frame for main

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Stack design
− Example: foo called
− The ebp and esp registers

should adjust to give us a
stack frame for foo
with the correct size

− The eip register should adjust
to let us execute the instructions for foo

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 38

Stack frame for main

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Stack design
− Example: foo returns
− The stack should look

exactly like it did before
foo was called

− Require to design
how to pass arguments
to functions using the stack

− Rule: if we ever overwrite a saved register,
we should remember its old value
by putting it on the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 39

Stack frame for main

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Store arguments
− Push the arguments

onto the stack
− Remember to adjust esp

to point to the new lowest
value on the stack

− Arguments are added
to the stack in reverse order

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 40

Stack frame for main

Argument #2

Argument #1

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Remember eip
− Push the current value

of eip on the stack
− This tells us what code

to execute next after
the function returns

− Remember to adjust esp to
point to the new lowest value on the stack

− This value is sometimes known as
the rip (return instruction pointer),
because if we’re finished with the
function, this pointer tells us
where in the instructions to go next

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 41

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Remember ebp
− Push the current value

of ebp on the stack.
− This will let us restore the

top of the previous stack
frame when we return

− Note: ebp is a saved register;
we store its old value on the stack
before overwriting it

− Remember to adjust esp to
point to the new lowest value on the stack

− This value is sometimes known as the
sfp (saved frame pointer), because it
reminds us where the previous frame was

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 42

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Adjust the stack frame
− Update all 3 registers
− We can safely do this as

we’ve just saved the old
values of ebp and eip

− Note: esp will always be
the bottom of the stack, so
there’s no need to save it

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 43

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Adjust the stack frame
− Update all 3 registers
− ebp now points to the top

of the current stack frame,
which is always the sfp

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 44

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Adjust the stack frame
− Update all 3 registers
− ebp now points to the top

of the current stack frame,
which is always the sfp

− esp now points to the bot-
tom of the current stack frame
(the compiler decides the size of
the stack frame by checking how much
space the function needs, i.e., how many
local variables the function has)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 45

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Adjust the stack frame
− Update all 3 registers
− ebp now points to the top

of the current stack frame,
which is always the sfp

− esp now points to the bot-
tom of the current stack frame
(the compiler decides the size of
the stack frame by checking how much
space the function needs, i.e., how many
local variables the function has)

− eip now points to the instructions for foo

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 46

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Run the function
− Now the stack frame is

ready to do whatever the
function instructions are

− Any local variables will be
stored to the stack now

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 47

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variable

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Return from the function
− Put all 3 registers back

where they were before
− Use the addresses stored

in rip and sfp to restore eip
and ebp to their old values

− esp naturally moves back
to its old place as we undo all our work,
which is popping values off the stack

− Note: the values we pushed on the stack
are still there (we don’t overwrite them
to save time), but they are below esp so
they cannot be accessed by memory

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 48

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variables

...

Code for foo

Code for main

CO
DE

STACK

CPU registers

ebp

esp

eip

X86 FUNCTION CALL DESIGN

• Steps of a function call
− Push arguments on the stack
− Push old eip (rip) on the stack

− Push old ebp (sfp) on the stack
− Adjust the stack frame

− Execute the function
− Restore everything

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 49

− Push arguments on the stack
− Push old eip (rip) on the stack
− Move eip
− Push old ebp (sfp) on the stack
− Move ebp
− Move esp
− Execute the function
− Move esp
− Restore old ebp (sfp)
− Restore old eip (rip)
− Remove arguments from stack

main

foo

main

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 50

X86 FUNCTION CALL

• Illustration
− The code above snippets are the C functions
− On the right, the code compiled into x86 assembly

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 51

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

X86 FUNCTION CALL

• Illustration
− The code above snippets are the C functions
− On the right, the code compiled into x86 assembly
− The instruction just executed in red
− The EIP points to the address of the next instruction

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 52

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

X86 FUNCTION CALL

• Illustration
− The code above snippets are the C functions
− On the right, the code compiled into x86 assembly
− The instruction just executed in red
− The EIP points to the address of the next instruction
− The below is the diagram of the stack

(each row represents a word, 4-byte)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 53

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

X86 FUNCTION CALL

• Illustration
− Push the arguments to the stack

• The push instruction decrements
the ESP to make space on the stack

• The arguments are pushed in reverse order

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 54

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP

ESP

caller stack frame

2

X86 FUNCTION CALL

• Illustration
− Push the arguments to the stack

• The push instruction decrements
the ESP to make space on the stack

• The arguments are pushed in reverse order

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 55

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP

ESP

caller stack frame

2

1

X86 FUNCTION CALL

• Illustration
− Push old EIP (RIP) on the stack
− Move EIP

• The call instruction does 2 things
• It first pushes the current value of EIP on the stack
• The saved EIP value on the stack is called the RIP
• It also changes EIP to point to the instructions of the callee

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 56

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP

ESP

caller stack frame

2

1

RIP of callee

X86 FUNCTION CALL

• Illustration
− The next 3 steps set up a stack frame for the callee function
− These instructions are sometimes called the function prologue

because they appear at the start of every function

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 57

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP

ESP

caller stack frame

2

1

RIP of callee

Function
prologue

X86 FUNCTION CALL

• Illustration
− Push old EBP (SFP) on the stack

• Restore the value of the EBP when returning, so
we push the current value of the EBP on the stack

• The saved value of the EBP on the stack is called the SFP

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 58

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee

X86 FUNCTION CALL

• Illustration
− Move EBP

• The instruction moves the EBP down to where ESP is

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 59

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

EBP ESP

caller stack frame

2

1

RIP of callee

SFP of callee

X86 FUNCTION CALL

• Illustration
− Move ESP

• The instruction moves the ESP down
to create a new stack frame

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 60

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee
EBP

X86 FUNCTION CALL

• Illustration
− Run the function

• The stack frame is set up
• The function can run
• This function just returns 42, so

we put 42 in the EAX register

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 61

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee
EBP

X86 FUNCTION CALL

• Illustration
− The next 3 steps restore the caller’s stack frame
− These instructions are sometimes called the function

epilogue, because they appear at the end of every function
− Sometimes the mov and pop instructions

are replaced with the leave and ret instruction

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 62

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee

local
EBP

Function
epilogue

X86 FUNCTION CALL

• Illustration
− Move ESP

• This instruction moves the ESP
up to where the EBP is located

• This effectively deletes the space
allocated for the callee stack frame

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 63

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIPESP

caller stack frame

2

1

RIP of callee

SFP of callee

local
EBP

X86 FUNCTION CALL

• Illustration
− Pop (restore) old EBP (SFP)

• The pop instruction puts
the SFP (saved EBP) back in EBP

• It also increments ESP
to delete the popped SFP from the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 64

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 retEIP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee

local

EBP

X86 FUNCTION CALL

• Illustration
− Pop (restore) old EBP (SFP)

• The ret instruction acts like pop %eip
• It puts the next value on the stack (the RIP)

into the EIP, which returns program execution to the caller
• It increases ESP to delete the popped RIP from the stack

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 65

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

ESP

caller stack frame

2

1

RIP of callee

SFP of callee

local

EBP

X86 FUNCTION CALL

• Illustration
− Remove arguments from stack

• Back in the caller, we increment ESP
to delete the arguments from the stack

• The stack has returned to its original state
before the function call

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 66

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
int local;
return 42;

}

caller:
 ...

push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

ESP
caller stack frame

2

1

RIP of callee

SFP of callee

local

EBP

TOPICS FOR TODAY

• Preliminaries (x86 assembly and call stack)
− C program
− Memory layout
− x86 architecture
− Stack layout
− Calling convention

• x86 calling convention design
• x86 calling convention example

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 67

Thank You!

Secure AI Systems Lab

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

