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TOPICS FOR THIS WEEK

• Trustworthy AI
− Motivation
− Preliminaries

• Machine learning (ML)
• ML-based systems

− (Potential) Threats
• Adversarial attacks
• Data poisoning
• Privacy attacks

− Discussion
• More issues (social bias, fairness, …)
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Traditionally, computer security seeks to ensure a system’s integrity against attackers 
by creating clear boundaries between the system and the outside world (Bishop, 
2002). In machine learning, however, the most critical ingredient of all–the training 
data–comes directly from the outside world. 

– Steinhardt, Koh, and Liang, NeurIPS’17
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DATA POISONING: MOTIVATION

• Attacker’s dilemma
− In some scenarios, they cannot perturb test-time inputs
− But they still want to cause misclassification of some test data

An Option Is To Manipulate Training Data := Data Poisoning
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DATA POISONING: CONCEPTUAL ILLUSTRATION

• Data poisoning (vs. adversarial examples)

Suciu et al., When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks, USENIX Security 2018

← Adversarial attack

Poisoning attack →
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REAL-WORLD POISONING
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EXPLOITATIONS IN PAPERS

MODE_ECB
MODE_ECB
MODE_CBC
MODE_GCM 
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WHAT IS THE ATTACK SCENARIO (THREAT MODEL)?

• Goal
− Manipulate a ML model’s behavior by compromising the training data
− Harm the integrity of the training data

• Capability
− Perturb a subset of samples (𝐷!) in the training data
− Inject a few malicious samples (𝐷!) into the training data

• Knowledge
− 𝐷"# : training data
− 𝑆   : test-set data
− 𝑓$  : a model architecture and its parameters 𝜃
− 𝐴  : training algorithm (e.g., SGD)
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WHAT IS THE ATTACK SCENARIO (THREAT MODEL)?

• Goal
− Manipulate a ML model’s behavior by compromising the training data
− Harm the integrity of the training data

• Two well-studied objectives
− Indiscriminate attack: I want to destroy your model!
− Targeted attack: I want a specific test-time sample to be misclassified!
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WHAT IS THE ATTACK SCENARIO (THREAT MODEL)? CONCEPTUAL ANALYSIS

← Linear model (SVM)

Neural Network →
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← Linear model (SVM)
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WHAT IS THE ATTACK SCENARIO (THREAT MODEL)? CONCEPTUAL ANALYSIS

← Linear model (SVM)

Neural Network →
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PRELIMINARIES: SUPPORT VECTOR MACHINE

• DIT [Link]
− 1: let’s put green points
− 2: let’s put red points on the other side
− 3: let’s put red points closer to the green cluster
− 4: let’s put red points in the middle of the green cluster
− 5: let’s use another kernel.
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WHAT POISONING ATTACKS ARE THERE?

• Poisoning attack procedure
− Draw a set of poison candidates from the data
− Craft poisoning samples
− Inject them into the original training data
− Increase the loss of the model trained on the compromised data
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• Illustration: (indiscriminate) poisoning sample crafting

WHAT POISONING ATTACKS ARE THERE?
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• Indiscriminate attacks on linear SVM (MNIST)

WHAT POISONING ATTACKS ARE THERE?

• Results
− Use a single poison 
− Error increases by 15 – 20%
− Increasing # poisons

leads to a higher error
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WHAT POISONING ATTACKS ARE THERE?

• (Targeted) Poisoning attack procedure
− Draw a set of poison candidates from the test-set data
− Craft poisoning samples
− Inject them into the original training data
− Increase the loss (or error) of the model (on a specific test-set sample = target)
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attack procedure
− Draw a set of poison candidates from the test-set data
− Craft poisoning samples, but preserve the labels
− Inject them into the original training data
− Increase the loss (or error) of the model (on a specific test-set sample = target)
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• A conventional view:
− Convolutions: extract features (or embeddings, latent representations, …)
− Last layer: use for classification

PRELIMINARIES: CONVOLUTIONAL NEURAL NETWORKS

Feature extractor: 𝑓(#)Input 𝑥 Classifier
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PRELIMINARIES: CONVOLUTIONAL NEURAL NETWORKS

Feature extractor: 𝑓(#)Input 𝑥 Classifier

• Input-space ≠ Feature-space:
− Two samples similar in the input-space can be far from each other in the feature-space
− Two samples very different in the input-space can be close to each other in 𝑓
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attack
− You want your any poison to be closer to your target (𝑥", 𝑦") in the feature space

Fish

Dog

Decision boundary
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attack
− You want your any poison to be closer to your target (𝑥", 𝑦") in the feature space

Fish

Dog

Decision boundary

The Fish Becomes DogFish!
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attack
− You want your any poison to be closer to your target (𝑥", 𝑦") in the feature space

Fish
Dog Decision boundary
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attacks
− You want your any poison to be closer to your target (𝑥", 𝑦") in the feature space
− Objective:

− Optimization:

// construct input perturbations

// decide how much we will perturb
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WHAT POISONING ATTACKS ARE THERE?
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WHAT POISONING ATTACKS ARE THERE?
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WHAT POISONING ATTACKS ARE THERE?

• (Clean-label) Targeted poisoning attacks
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HOW CAN WE DEFEAT POISONING ATTACKS?

• Data sanitization defenses
− Examine the training data and remove the poisons

• Oracle defense: when we know the data distribution (unrealistic)
• Data-dependent defense: when we don’t know the true distribution (real-world!)

• Differential privacy (DP)
− We will visit this at the end
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TOPICS FOR THIS WEEK

• Trustworthy AI
− Motivation
− Preliminaries

• Machine learning (ML)
• ML-based systems
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PRIVACY RISKS OF MACHINE LEARNING

1https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
2https://www.muckrock.com/news/archives/2020/jan/18/clearview-ai-facial-recogniton-records/
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PRIVACY RISKS OF MACHINE LEARNING

• Let’s do some discussions
− What is privacy?
− What does privacy matter?
− How is it different from security?
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• ML Pipeline

• Privacy risks
− Identify your membership in the training data
− Identify (sensitive) properties of your training data
− Identify (sensitive) attribute of a person that you know
− Reconstruct a sample completely
− Reconstruct a model behind the query interface
− …

WHAT IS THE ATTACK SCENARIO (THREAT MODEL)?

Training Data
(𝑥, 𝑦) ∈ 𝐷"#, 𝑥 ∈ 𝑅%

Models
𝑓 𝑥 = 	 -𝑦 Query interface
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• ML Pipeline

• Privacy risks (from the view of the work by Dwork et al.)
− Tracing attack         : Identify your membership in the training data
− Reconstruction      : Identify (sensitive) properties of your training data
− De-anonymization: Identify (sensitive) attribute of a person that you know
− Reconstruction      : Reconstruct a sample completely
− Reconstruction      : Reconstruct a model behind the query interface
− …

WHAT IS THE ATTACK SCENARIO (THREAT MODEL)?

Training Data
(𝑥, 𝑦) ∈ 𝐷"#, 𝑥 ∈ 𝑅%

Models
𝑓 𝑥 = 	 -𝑦 Query interface

Dwork et al., Exposed! A Survey of Attacks on Private Data
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WHAT IS THE ATTACK SCENARIO (THREAT MODEL)?

• We consider non-trivial cases
− ex. Smoking causes cancer
− Revealing this information is not a privacy attack
− We know this is correlated without interacting with the target model

− ex. A model trained on a dataset of lung cancer patients
− ex. The model gets a patient information and returns the probability of getting the cancer
− ex. We know the Person A is smoking
− ex. We identify that A is in the dataset (defer the details to later on)
− It’s a non-trivial attack as we identify the information about an individual
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WHAT PRIVACY ATTACKS ARE THERE?

• Membership Inference
− Goal:

• Identify if a specific instance 𝑦 is IN the dataset 𝐷"#&'( or is not (OUT)
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WHAT PRIVACY ATTACKS ARE THERE?

• Membership Inference (Shokri et al.)
− Train “shadow models”

• The attacker collects similar data from various sources
• The attacker splits the data into two: “shadow training data” and “shadow test data”
• The attacker trains multiple models with different splits
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WHAT PRIVACY ATTACKS ARE THERE?

• Membership Inference (Shokri et al.)
− Train “shadow models”

• The attacker collects similar data from various sources
• The attacker splits the data into two: “shadow training data” and “shadow test data”
• The attacker trains multiple models with different splits

− Get query results from shadow models:
• The attacker knows the memberships
• For the samples 𝒙, 

and collect (𝑦, $𝑦, IN/OUT)
• Then train the attack model 

that predicts IN/OUT from (𝑦, $𝑦)
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• MI attack results
− Dataset: Purchase-100
− Models (trained on 10k records):

• Amazon ML
• Google’s Prediction API

− In-short: across all models, MI attacks work with a pretty reasonable acc.

WHAT PRIVACY ATTACKS ARE THERE?
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• MI attack results
− Dataset: Purchase-100
− Modification:

• # Classes: 10 – 100 (keep N(𝐷!") the same)

• Google Prediction API
− In-short: more supporting data samples in the class reduces MI attacks’ success

WHAT PRIVACY ATTACKS ARE THERE?
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• MI attacks, why do they work?
− Dataset: Purchase
− Modification:

• # Classes: 10 – 100 classes (keep N(𝐷!") the same)

• Google Prediction API
− In-short: It may depend on a model’s ability to distinguish members and non-members

WHAT PRIVACY ATTACKS ARE THERE?
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WHAT PRIVACY ATTACKS ARE THERE?

• Suppose: a developer who write code for your company’s core products
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WHAT PRIVACY ATTACKS ARE THERE?

• Model inversion (or data extraction) attacks

Model 𝑓

Observe correlations!

Input queries 𝑥̅ output 𝑓(𝑥̅)
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WHAT PRIVACY ATTACKS ARE THERE?

• Model inversion attacks
− Costs:

• Per attack: 1.4sec (softmax) << 693 sec (DAE) << 1298 sec (MLP)
• Per attack: 5.6 epochs (softmax) << 3096 epoch (MLP) << 4728.5 epoch (DAE)

− Accuracy:
• Overall: ~80% acc. (softmax) > 60% acc. (MLP) > 55% acc. (DAE)
• Skilled workers: ~95% acc. (softmax) > 80% acc. (MLP) > 75% acc. (DAE)
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WHAT PRIVACY ATTACKS ARE THERE?

• Data extraction attacks

Hi John Doe,

It was nice to meet you. 
Alice will follow up with 
this contract #: 49X7-
5967-9185
….

What should I 
prepare for the 
next schedule?

Alice 4856-8 (tab)
Alice 49X7-69 (tab)
Alice 49X7-5967-9185
…

(Insider) Let me find 
out this # and sell it 
to our competitors
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WHAT PRIVACY ATTACKS ARE THERE?

• Unintentional memorization
− It does NOT mean that a model memorizes any data
− It means a model memorizes out-of-distribution training data (i.e., secrets)

• Do neural networks unintentionally memorize?
− Dataset: Penn Treebank (PTB)
− Model: LSTM with 200 hidden units
− Secret:

• A sentence “My social security number is 078-05-1120”
• Inject this sentence into the PTB dataset

− Extraction: auto-completion
• Type: “My social security number is 078-”
• Shows: “My social security number is 078-05-1120”
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WHAT PRIVACY ATTACKS ARE THERE?

• Measuring memorization
− [Def. 1] The log-perplexity:

• It measures how surprised the model to see a given input sequence
 

− [Notation]
• Canaries: a random sequence of numbers (ex. “the random number is 281265017”)
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WHAT PRIVACY ATTACKS ARE THERE?

• Measuring memorization
− [Def. 2] The rank of a canary 𝑠[𝑟]:

• It measures how many random sequences that have log-perplexity lower than 𝑟	are 
 

− [Def. 3] The guessing entropy is the number of guesses 𝐸(𝑋) required in an 
        optimal strategy to guess the value of a discrete random variable 𝑋
• Brute force                    : 𝐸 𝑋 = 0.5|𝑅|
• Query-access attacker : 𝐸 𝑠 𝑟 𝑓! = 𝐫𝐚𝐧𝐤!(𝑠 𝑟 )

− [Def. 4] Given a canary 𝑠 𝑟 , a model 𝑓$, and the randomness space
              𝑅, the exposure of the canary is:
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WHAT PRIVACY ATTACKS ARE THERE?

• Data extraction attacks
− Word-level LM:

• Dataset: WikiText-103
• Model: SoTA models
• Canaries: a sequence of 8 words, randomly chosen, insert 5 times

− Results:
• The lower the perplexity, the easier to ext.
• The dots on the line are Pareto-optimal att.
• 144 exposure means ext. should be possible
• Mem. and utility are not highly correlated
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WHAT PRIVACY ATTACKS ARE THERE?

• Data extraction attacks 
− NMT:

• Dataset: English-Vietnamese (100k sentence pairs)
• Model: Good models in TensorFlow repository
• Canaries: “My social security number is XXX-XX-XXXX” (in Vietnamese too)

− Results:
• Inserted once, the exposure becomes 10

> 1000x times more likely to extract than random
• Inserted > 4 times, the exposure becomes 30

> completely memorized…
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HOW CAN WE DEFEAT PRIVACY ATTACKS?
• 𝜖-Differential Privacy

− A randomized algorithm 𝑀:𝐷 → 𝑅 with domain 𝐷 and a range 𝑅	satisfies 𝜖-differential 
privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds

• (𝜖, 𝛿)-Differential Privacy

− 𝛿: Represent some catastrophic failure cases [Link, Link]
− 𝛿 < 1/|d|, where |d| is the number of samples in a database
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HOW CAN WE DEFEAT PRIVACY ATTACKS?

• (𝜖, 𝛿)-Differential Privacy [Conceptually]

− You have two databases 𝑑, 𝑑′ differ by one item
− You make the same query 𝑀 to each and have results 𝑀(𝑑) and 𝑀(𝑑))
− You ensure the distinguishability between the two under a measure 𝜖

• 𝜖 is large: those two are distinguishable, less private
• 𝜖 is small: the two outputs are similar, more private

− You also ensure the catastrophic failure probability 𝛿
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HOW CAN WE DEFEAT PRIVACY ATTACKS?

• (𝜖, 𝛿)-Differential Privacy

• Mechanism for (𝜖, 𝛿)-DP: Gaussian noise

− 𝑀(𝑑): (𝜖, 𝛿)-DP query output on 𝑑
− 𝑓(𝑑): non (𝜖, 𝛿)-DP (original) query output on 𝑑
− 𝑁(0, 𝑆*+ # 𝜎+): Gaussian normal distribution with mean 0 and the std. of 𝑆*+ # 𝜎+

Post-hoc: Set the Goal 𝜖 and Calibrate the noise 𝑆+, ( 𝜎,!
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HOW CAN WE DEFEAT PRIVACY ATTACKS?

• Revisit’ed – Mini-batch SGD
1. At each step 𝑡, it takes a mini-batch 𝐿"
2. Computes the loss ℒ(𝜃) over the samples in 𝐿", w.r.t. the label 𝑦
3. Computes the gradients 𝑔" of ℒ(𝜃)
4. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿!, and compute ℒ(𝜃)
2. Compute 𝑔!  of ℒ(𝜃)
3. Update the 𝜃

This Process Should Be (𝜖, 𝛿)-DP!
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HOW CAN WE DEFEAT PRIVACY ATTACKS?

• Mini-batch SGD to DP-SGD
1. At each step 𝑡, it takes a mini-batch 𝐿"
2. Computes the loss ℒ(𝜃) over the samples in 𝐿", w.r.t. the label 𝑦
3. Computes the gradients 𝑔" of ℒ(𝜃)
4. Clip (scale) the gradients to 1/𝐶, where 𝐶 > 1
5. Add Gaussian random noise 𝑁(0, 𝜎"𝐶"𝐈) to 𝑔"
6. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿!, and compute ℒ(𝜃)
2. Compute 𝑔!  of ℒ(𝜃)
3. Clip 𝑔! and add noise
4. Update the 𝜃
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