CS 370: INTRODUCTION TO SECURITY
05.16: ADVANCED WEB SECURITY |, lI

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
&re UI‘llVCI'Slty Secure Al Systems Lab

HEADS-UP

* Updates

- Quizzes
* Quiz 2:5/13-23 - 5/23-30
* Quiz 3:6/13-15 - 6/8-15

- Micro-labs
* Internet security : 5/23 - 5/30
* Trustworthy ML :6/13 - 6/15
* Usable security : Removed (full points for everyone)

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

TOPICS FOR TODAY

* Advanced web security
— Same-origin policy
* Motivation
* Same-origin policy
* Weaknesses
— XSS (Cross-Site Scripting)
* Motivation
* XSS attacks
* Defenses (and potential weaknesses)
— CSRF (Cross-Site Request Forgery)
* Cookies
* Session
* CSRF attacks
* Defenses (and potential weaknesses)

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

SECURITY RISKS ON THE INTERNET

e Risk I:

Oregon State
& University

- Malicious websites should not be able to
tamper with our information or interact-
ions on other websites

- Example:
* We visit “latimes.com”
* Malicious folks do “ad” on this site

* The “ad” runs some JavaScripts and
extracts our information from “latimes”
(e.g., which type of articles we read)

| want to know what you read! !

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

AAAAAAAAAA

How much COVID is in my community? It’s getting harder
to tell

SUBSCRIBERS ARE READING)

14 things to do in Los Olivos, the magical
country town filled with wine and lavender
blooms

rrrrrrrrrr

Hulu documentary delves deeper into the
Randall Emmett scandal >

LAKERS

Plaschke: | was wrong: These Lakers can win an
NBA championship

FREE
AZURE CLOUD
READINESS
ROADMAP

Bianca Povalitis, center, along with fellow roller skaters enjoy an evening at Venice Beach Skate Plaza in June
Armond / Los Angeles Times)

2022. (Jason

BY LUKE MONEY, RONG-GONG LIN Il

MAY 15, 2023 5 AM PT

aga -

nto [A
ud. xM.\\

(Y0neNeck

et

SOLUTION TO THE SECURITY RISK

e Same-origin policy

— A rule that prevents one website from tampering with other unrelated websites

* Enforced by the web browser

* Prevents a malicious website from running scripts on other websites
* Pages from the same site don’t need to be isolated to each other

browser:

No security
> barrier wikipedia.org

wikipedia.org

T®
Oregon State
& University - -

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

browser:

security [
barrier

wikipedia.org

[P— -

m o 4
ani ricar
ash Rewards

T

mozilla.org

SOLUTION TO THE SECURITY RISK

e Same-origin policy
— A rule that prevents one website from tampering with other unrelated websites
* Enforced by the web browser
* Prevents a malicious website from running scripts on other websites
* Pages from the same site don’t need to be isolated to each other

LLLLLL

Plaschke: | was wrong: These Lakers can win an
NBA championship

FREE
AZURE CLOUD

READINESS
ROADMAP

BY LUKE MONEY, RONG-GONG LIN Il

s N

(Y0neNeck

MAY 15, 2023 5 AM PT

aga -

Browser: No, you can’t do this requesti

T®
Oregon State
& University - - -

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 6

RecAP: URLS

e Same-origin policy
— A rule that prevents one website from tampering with other unrelated websites
* Enforced by the web
* Prevents a malicious website from running scripts on other websites
* Pages don’t need to be isolated to each other

- Every webpage has an origin defined by its URL with three parts:
* Protocol: The protocol in the URL
: The domain in the URL's location

* Port: The port in the URL's location
(If not specified, the default is 80 for HTTP and 443 for HTTPS)

e Example:
- https:// /assets/photo.png (default: 443)
- http:// :80/assets/new_photo.png

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

SOLUTION TO THE SECURITY RISK

e Same-origin policy

- Two websites have the same origin if and only if
— The protocol, domain, and port of the URL all match exactly

Domain |

Domain Il

Same-origin?

https://cs.org

http://www.cs.org

No, domain mismatch

http://cs.org

https://cs.org

No, protocol mismatch

http://cs.org:80

http://cs.org:8080

No, protocol mismatch

https://cs.org/photo.png

https://cs.org/data/my.htm

Yes

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

SOLUTION TO THE SECURITY RISK

e Same-origin policy

- Two websites have the same origin if and only if
— The protocol, domain, and port of the URL all match exactly

Domain |

Domain Il

Same-origin?

https://cs.org

http://www.cs.org

No, domain mismatch

http://cs.org

https://cs.org

No, protocol mismatch

http://cs.org:80

http://cs.org:8080

No, protocol mismatch

://cs.org/photo.png

https://cs.org/data/my.htm

Yes

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

SOLUTION TO THE SECURITY RISK

e Same-origin policy
- Two websites have the same origin if and only if
— The protocol, domain, and port of the URL all match exactly
- Example scenario:
e c¢s.org embeds google.com
* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

10

SAME-DRIGIN POLICY EXCEPTIONS

e Same-origin policy
- Two websites have the same origin if and only if
— The protocol, domain, and port of the URL all match exactly
- Example scenario:
e c¢s.org embeds google.com
* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one
- Exception I:
* JavaScript runs with the origin of the page that loads it
* ex. cs.org fetches JavaScript from google.com:

— The JavaScript has the origin of cs.org
- cs.org has “copy-pasted” JavaScript onto its webpage

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

11

SAME-DRIGIN POLICY EXCEPTIONS

nnnnnn

Plaschke: | was wrong: These Lakers can win an
NBA championship

e Same-origin policy
- Two websites have the same origin if and only if g
~ The protocol, domain, and port of the URL all match exactly ===~ | BEEHT i
~ Example scenario: =3 L

(©)0neNeck

e c¢s.org embeds google.com

* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one
- Exception Il:
» Websites can fetch and display images/frames from other origins
* The website only knows about the image’s size and dimensions (restricted info.)
* The image and the frame has the origin of the page that it comes from (restricted)

T®
Oregon State
& University - :

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 12

SAME-ORIGIN POLICY EXCEPTION [AND A WEAKNESS)

nnnnnn

Plaschke: | was wrong: These Lakers can win an
NBA championship

e Same-origin policy
- Two websites have the same origin if and only if e
~ The protocol, domain, and port of the URL all match exactly ===~ | WS ";;
— Example scenario: md R

(©)0neNeck

* c¢s.org embeds google.com

* The inner frame cannot interact with the outer frame
* The outer frame cannot interact with the inner one

— Exception lIl: postMessage(“run”, script)
* Websites can agree to allow some limited sharing
* Cross-origin resource sharing (CORS)
* ex. the postMessage function in JavaScript
- Receiving origin decides if to accept the message based on the origin
- The correctness is enforced by the browser

T®
Oregon State
& University - :

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 13

TOPICS FOR TODAY

* Advanced web security
— Same-origin policy
* Motivation
* Same-origin policy
* Weaknesses
— XSS (Cross-Site Scripting)
* Motivation
* XSS attacks
* Defenses (and potential weaknesses)
— CSRF (Cross-Site Request Forgery)
* Cookies
* Session
* CSRF attacks
* Defenses (and potential weaknesses)

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

14

SECURITY RISKS ON THE INTERNET

. Rank
° R I S k I | Rank ID Name Score Cléi:t Ch::ge
(CVEs) 202'1
1 CWE-787 |Out-of-bounds Write 64.20 62 0
—
2 CWE-79 | Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
3 CWE-89 | Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 |[Improper Input Validation 20.63 20 0
5 CWE-125 ||Out-of-bounds Read 17.67 1 -2 v
6 CWE-78 ||Improper Neutralization of Special Elements used in an OS Command ('‘OS Command Injection')| 17.53 32 -1 v
7 CWE-416 ||Use After Free 15.50 28 0
8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0
9 CWE-352 |Cross-Site Request Forgery (CSRF) 11.53 1 0
10 CWE-434 |Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 ||Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 ||Integer Overflow or Wraparound 6.53 2 -1 v
14 CWE-287 | Improper Authentication 6.35 4 0
15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 ||Missing Authorization 5.53 1 +2 A
17 CWE-77 ||Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |Missing Authentication for Critical Function 5.15 6 -7 v
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 v
20 CWE-276 ||Incorrect Default Permissions 4.84 0 -1 v
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization (‘Race Condition') 3.57 6 +11 A
23 CWE-400 (|Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 |Improper Restriction of XML External Entity Reference 3.38 0 -1 v
25 CWE-94 | Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A
Oregon State Ihttps://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 15

REVISIT: JAVASCRIPT

* JavaScript
- A programming language for running code in the web browser
- Runs on the
* The server sends code as part of the HTTP response
* The code runs in the browser, not in the web-server
- Used to manipulate web pages (HTML and CSS)
* Makes modern websites interactive
* JavaScript can be directly embedded in HTML with <script> tags
- Supported by all modern web browsers
* Most modern webpages involve JavaScript

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

16

REVISIT: JAVASCRIPT - CONT'D

 JavaScript example
— Create a pop-up message
— HTML: <script>alert(”Hello world!")</script>

()
Hello world!
\§ J

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

| If the browser loads the HTML,

it will run the embedded JavaScript
and create a pop-up window.

17

REVISIT: JAVASCRIPT - CONT'D

* JavaScript in Go
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"] [0]
fmt.Fprintf (w, "<html><body>Hello %s!</body></html>", name)

— You can use this script to render the website with the given name

https://cs370.com/hello?name=Bob

- You will receive the following response (and the browser renders it)

<html><body>Hello Bob!</body></html>

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

REVISIT: JAVASCRIPT - CONT'D

* JavaScript in Go
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"] [0]
fmt.Fprintf (w, "<html><body>Hello %s!</body></html>", name)

— You can use this script to include HTML tags

https://cs370.com/hello?name=Bob

- You will receive the following response (and the browser renders it)

<html><body>Hello Bob!</body></html>

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

REVISIT: JAVASCRIPT - CONT'D

* JavaScript exploitation
- Websites runs JavaScript with an (potentially malicious) input
— Your HTML includes the following script (and hosted on “cs370.com”)

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"] [0]
fmt.Fprintf (w, "<html><body>Hello %s!</body></html>", name)

— You can use this script to include HTML tags

https://cs370.com/hello?name=<script>alert (1)</script>

- You will receive the following response (and the browse

<html><body>Hello <script>alert (l)</script>!</body></html>

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

XSS: CROSS-SITE SCRIPTING

* Cross-site scripting
- An adversary injects malicious JavaScript to a legitimate website
* The victim accesses the legitimate website
* The legitimate website sends the attacker’s JavaScript to the victim
* The victim’s browser will run the script with the origin of the legitimate website
* Now the attacker’s JavaScript can access information on the legitimate website
— It evades the same-origin policy
* The JavaScript will run with the same origin (as the legitimate website)
- Two representative XSS attacks
» Stored XSS
* Reflected XSS

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

21

XSS: CROSS-SITE SCRIPTING

e Stored XSS (Persist XSS)
— The attacker’s JavaScript is stored on the legitimate server
- Example: Facebook pages
* Anyone can load a Facebook page with content provided by users
* An adversary puts some JavaScript on their Facebook page
* Anyone who loads the attacker’s page will run JavaScript (with the origin of Facebook)
- Note: stored XSS requires the victim to load the page with injected JavaScript

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

22

XSS: CROSS-SITE SCRIPTING

 Stored XSS illustration
— The attacker’s JavaScript is stored on the legitimate server
- Note: stored XSS requires the victim to load the page with injected JavaScript

2. Request website contents

)

T®
Oregon State
& University) -

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 23

XSS: CROSS-SITE SCRIPTING

* Reflected XSS

— The attacker has the victim input JavaScript into a request
— The content is reflected (copied) in the response from the server
- Example: Search
* The victim makes a request to http://google.com/search?q=Bob
* The response will be “XYZ results for Bob”
* The victim makes a request to http://google.com/search?q=<script>alert(1)</script>

* The response will be “XYZ results for <script>alert(1)</script>"
- Note: reflected XSS requires the victim to make a request with injected JavaScript

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

24

http://google.com/search?q=Bob
http://google.com/search?q=%3cscript%3ealert(1)%3c/script%3e

XSS: CROSS-SITE SCRIPTING

» Reflected XSS illustration
— The attacker has the victim input JavaScript into a request
— The content is reflected (copied) in the response from the server

P

2. Request URLs under the attack’s control

ws 5. Send malicious requests and receives resp.
~

~
\\

4. The victim runs the malicious script

1. Make the victim do malicious requests >«
(e.g., click the link in a spam)

Oregon State
& University

~
~ \\
SN
\\ ~
~, \\
\\
~

~
RN 6. Receives sensitive data
SO (e.g., session token)

~,

SSOSN
LSS
SN
S A

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

XSS: CROSS-SITE SCRIPTING

» Reflected XSS (Practicality)

- How do we make the victim to make such malicious requests?
* Make a malicious website that includes an embedded iframe which makes the request

- Make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
- <iframe height=1 width=1 src="http://google.com/search?g=<script>alert(l)</script>">

* Trick the victim into clicking the link

- Posting a link on social media

- Sending a text (Here is a new photo from your friend XYZ...)

- Sending a phishing email
* The link will load the attacker’s website and redirects to the reflected XSS link
* ...(Good luck then) ...

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

26

XSS: CROSS-SITE SCRIPTING

* Defenses
— HTML sanitization
- HTML escaping
— Content security policy (CSP)

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

31

XSS: CROSS-SITE SCRIPTING

* Defenses

— HTML sanitization
the potentially-exploitable HTML code

- Example:
» <i> <u> are allowed
» <script> <object> <embed> <link> will be removed
» onClick attribute will be removed
> ... many more

- Important:
»> Need to escape all dangerous characters (lists of them can be found)
» Otherwise, we will still be vulnerable

* You should always to do this for you

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

32

XSS: CROSS-SITE SCRIPTING

* Defenses
- HTML escaping
the request (not a HTML)

- Transform certain characters into some other format

- Example:
»> Make it start with an ampersand (&) and end with a semicolon (;)
» Instead of <, use < himis
» |nstead of ", use " <body> | |
> Instead of , use </b0dyljello <scriptsgt;alert (1) </scriptéagt;!
» ... many more </html>

- Important:
»> Need to escape all dangerous characters (lists of them can be found)
» Otherwise, we will still be vulnerable

* You should always to do this for you

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

XSS: CROSS-SITE SCRIPTING

e Defenses
- HTML escaping

func handleSayHello (w http.ResponseWriter, r *http.Request) {
name := r.URL.Query () ["name"] [0]
fmt.Fprintf (w, "<html><body>Hello %s!</body></html>",html.EscapeString (name))

— A malicious URL of the attack’s

https://cs370.com/hello?name=<script>alert (1)</script>

- You will receive the following safer response

<html><body>Hello <scripté>alert(l)</scripté>!</body></html>

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

XS8S:

CROSS-SITE SCRIPTING

* Defenses
- HTML escaping — cont’d

” Oregon State
& Universi
ty

* Tackles the challenge:
- Suppose a developer has to take an action for every request
- It’s unlikely to be manageable by the developer

* Smart ways

- You declare in your HTML what data goes where

- The templating engine
- The HTTP library encourages you to use templates

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

<html>
<body>
Hello {{.name}}!
</body>
</html>

35

XS8S:

CROSS-SITE SCRIPTING

* Defenses
— Content security policy (CSP)

g Oregon State
3*5‘ Universi
ty

* Instruct the browser to
* Implement to specify such policy
» Standard approaches:
- Disallow all inline scripts, which prevents inline XSS
- Ex: Disallow <script>alert (1)</script>
- Only allow scripts from specified domains, which prevents XSS from linking to external scripts

- Ex: Disallow <script src="https://cs370.com/infostealer.js">

* Note:
- CSPis also (e.g., iframes, images, etc.)
- Relies on the , S0 more of a mitigation for defense-in-depth

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

36

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

TOPICS FOR TODAY

* Advanced web security

— XSS (Cross-Site Scripting)

* Motivation

* XSS attacks

* Defenses (and potential weaknesses)
— CSRF (Cross-Site Request Forgery)

* Cookies

* Session

* CSRF attacks

* Defenses (and potential weaknesses)

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

37

MOTIVATION

e HTTP is state-“less”

— lllustrating example
* Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”
* Today, Bob visited “facebook.com” and found that the language is “English”
* Bob sets it to “Sanskrit”
* ... (do this unlimited times)

5.15.2023 Set my language to “Sanskrit”

... (5.17.2100 Set my language ...)

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

MOTIVATION

e Solution:

ﬁ 5.16.2023 HTTP request

ustrating example

* Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”

* The server sends containing the language pref.
* The browser stores the data to its cookie jar

* Today, Bob visited “facebook.com” and see the “Sanskrit” version

5.15.2023 Set my language to “Sanskrit”

5.15.2023 HTTP response with

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

39

Cookl

e Cook
- A

Oregon State
& University

ES &
ies
small blocks of data

* The server sends cookies as a part of their HTTP response (no cookies at the first time)
* HTTP Header:
- Set-cookie: name = value;
- (It’'sa with some extra metadata)
- Example:
» HTTP/1.1 200 OK
» Content-Type: text/html
» Set-Cookie: items=16
» Set-Cookie: headercolor=blue
» Set-Cookie: footercolor=green
» Set-Cookie: screenmode=dark, Expires=Sun, 1 Jan 2023 12:00:00 GMT
* Let’s take a look (Chrome: view > developer > developer tools > application > Cookies)

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

40

COOKIES ¢

* Cookie scope
- A small blocks of data

* The server sends cookies as a part of their HTTP response (no cookies at the first time)

* HTTP Header:
- Set-cookie: name = value;
—-| Domain = (when to send);
-| Path = (when to send);

* The server automatically attaches the cookies in scope

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

41

COOKIES ¢

* Cookie scope
- A small blocks of data
* The server sends cookies as a part of their HTTP response (no cookies at the first time)
* HTTP Header:
- Set-cookie: name = value;
- Domain = (when to send);
- Path = (when to send);

* The server automatically attaches the cookies in scope
* The cookies can only be sent via secure communication (using TLS)

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

42

COOKIES ¢

* Cookie scope

- A small blocks of data
* The server sends cookies as a part of their HTTP response (no cookies at the first time)
HTTP Header:
- Set-cookie: name = value;

- Domain = (when to send);
- Path = (when to send);
- Secure = (only send over HTTPS);

The server automatically attaches the cookies in scope
The cookies can only be sent via secure communication (using TLS)

The browser should delete the cookies after a certain expiration date
HttpOnly: cookies cannot be accessed by JavaScript; only for HTTP requests

T®
Oregon State
& University - :
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 43

COOKIES &

* Cookie policy
— The server sets the scope (domain and path) on cookies
- The browser sends the cookies based on the scope

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

44

COOKIES ¢

* Cookie policy
— The server sets the scope (domain and path) on cookies
* Domain can be any domain-suffix of URL-hostname (not a TLD)
* Example:
- The server “login.cs370.com” sends cookies; can it
set cookies in the browser for “cs370.com”?
set cookies in the browser for “.cs370.com”?
set cookies in the browser for “secret.cs370.com”?
set cookies in the browser for “.com”?
set cookies in the browser for “osu-cs370.com”?
e Path can be set to any path

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

45

COOKIES ¢

* Cookie policy

- The browser sends the cookies based on the scope
* Suppose the cookie we have is
- domain: “ "
- path : “/micro-labs”
e The browser can include the cookies in the request to:

- http://login. /micro-labs/week1/sanity-check

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

46

COOKIES ¢

* Example:

- Cookie 1:
* name = neuronoverflow
* value = ctf-admin
* domain = login.cs370.com
* path=/
* non-secure

- Which cookies will be sent?
* “http://checkout.cs370.com”
* “http://login.cs370.com”
* “http://osu-cs370.com”
* “https://login.cs370.com”

- Cookie 2:

name = test

value = ctf-player
domain =.cs370.com
path =/

non-secure

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

COOKIES ¢

e Cookies vs. same-origin policy
— SOP requires an exact match between domains
- Cookies do not always require an exact match; scope matters
- Example:
* Suppose we have a cookie:
- name = neuronoverflow
value = ctf-admin
domain = login.cs370.com
path =/
non-secure
* “http://users.cs370.com”
— JavaScript on this URL can access the cookie above...

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

48

COOKIES &

* Bypass same-origin policy
— SOP requires an exact match between domains

000
' ‘ 1. The “facebook.com” sends cookies (e.g., session token)
e mmmmmmmmmmmmmm——— e
T ~~“~~
: 2 3. Th~e~~7‘~
4 Victj~~~~_
login.facebook.com Cce S“‘\\ login.facebook.com

m1234.facebook.com

T®
Oregon State
& University - :

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 49

MOTIVATION

* Session authentication
- Motivating example
* Bob visited “oregonstate.com” and login with their username, password
* Bob, 5-min later, visit “oregonstate.edu”
* The website asks their usernamd and password
* Bobis very happy...

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

50

MOTIVATION

* Session authentication
- Motivating example
* Bob visited “oregonstate.com” and login with their username, password
* Bob, 5-min later, visit “oregonstate.edu”
* The website asks their usernamd and password
* Bobis very happy...

* A secret value for associating requests with a legitimate user
* In the first visit to the website:

- Type the username and password

- The browser receives a session token (the server remembers this token)
* The subsequent visits to the website

- Include the session token in the requests

- The server checks if the token is valid and is not expired

- Then the server processes the request

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

51

SESSION TOKEN

* Session authentication
~ Session token &
* A secret value for associating requests with a legitimate user
* In the first visit to the website:
- Type the username and password
- The server sends

- The browser receives a session token (the server remembers this token)
* The subsequent visits to the website

- Include the in the requests

- The server checks if the token is valid and is not expired

- Then the server processes the request
* If one logs-out

- The browser and server delete the session token

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

52

SESSION TOKEN

« + cookies G5
- Security
* Suppose that the session token is stolen:
- The attacker can impersonate you in any request
- ... You are friendly-up!
* To ensure the security
- The server needs to generate session tokens randomly and securely
- The browser requires to
» Check if malicious website cannot steal tokens (GSB)
»> Make sure they do not send session tokens to malicious websites

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

53

https://safebrowsing.google.com/

TOPICS FOR TODAY

* Advanced web security
— Same-origin policy
* Motivation
* Same-origin policy
* Weaknesses
— XSS (Cross-Site Scripting)
* Motivation
* XSS attacks
* Defenses (and potential weaknesses)
— CSRF (Cross-Site Request Forgery)
* Cookies
+ [Next lecture!] Session
 [Next lecture!] CSRF attacks
* [Next lecture!] Defenses (and potential weaknesses)

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

54

Thank You!

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

