
Secure AI Systems Lab

CS 370: INTRODUCTION TO SECURITY
05.16: ADVANCED WEB SECURITY I, II

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

HEADS-UP

• Updates
− Quizzes

• Quiz 2: 5/13-23 → 5/23-30
• Quiz 3: 6/13-15 → 6/8-15

− Micro-labs
• Internet security : 5/23 → 5/30
• Trustworthy ML : 6/13 → 6/15
• Usable security : Removed (full points for everyone)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 2

TOPICS FOR TODAY

• Advanced web security
− Same-origin policy

• Motivation
• Same-origin policy
• Weaknesses

− XSS (Cross-Site Scripting)
• Motivation
• XSS attacks
• Defenses (and potential weaknesses)

− CSRF (Cross-Site Request Forgery)
• Cookies
• Session
• CSRF attacks
• Defenses (and potential weaknesses)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 3

SECURITY RISKS ON THE INTERNET

• Risk I:
− Malicious websites should not be able to

tamper with our information or interact-
ions on other websites

− Example:
• We visit “latimes.com”
• Malicious folks do “ad” on this site
• The “ad” runs some JavaScripts and

extracts our information from “latimes”
(e.g., which type of articles we read)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 4

I want to know what you read!

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser
• Prevents a malicious website from running scripts on other websites
• Pages from the same site don’t need to be isolated to each other

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 5

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser
• Prevents a malicious website from running scripts on other websites
• Pages from the same site don’t need to be isolated to each other

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 6

Browser: No, you can’t do this request

RECAP: URLS

• Same-origin policy
− A rule that prevents one website from tampering with other unrelated websites

• Enforced by the web browser
• Prevents a malicious website from running scripts on other websites
• Pages from the same site don’t need to be isolated to each other

− Every webpage has an origin defined by its URL with three parts:
• Protocol: The protocol in the URL
• Domain: The domain in the URL’s location
• Port: The port in the URL’s location

(If not specified, the default is 80 for HTTP and 443 for HTTPS)
• Example:

− https://computer.science.org/assets/photo.png (default: 443)
− http://science.org:80/assets/new_photo.png

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 7

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly

Domain I Domain II Same-origin?

https://cs.org http://www.cs.org No, domain mismatch

http://cs.org https://cs.org No, protocol mismatch

http://cs.org:80 http://cs.org:8080 No, protocol mismatch

https://cs.org/photo.png https://cs.org/data/my.htm Yes

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 8

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly

Domain I Domain II Same-origin?

https://cs.org http://www.cs.org No, domain mismatch

http://cs.org https://cs.org No, protocol mismatch

http://cs.org:80 http://cs.org:8080 No, protocol mismatch

https://cs.org/photo.png https://cs.org/data/my.htm Yes

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 9

Reminder: Same-origin policy works with HTTPs!

SOLUTION TO THE SECURITY RISK

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly
− Example scenario:

• cs.org embeds google.com
• The inner frame cannot interact with the outer frame
• The outer frame cannot interact with the inner one

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 10

SAME-ORIGIN POLICY EXCEPTIONS

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly
− Example scenario:

• cs.org embeds google.com
• The inner frame cannot interact with the outer frame
• The outer frame cannot interact with the inner one

− Exception I:
• JavaScript runs with the origin of the page that loads it
• ex. cs.org fetches JavaScript from google.com:

− The JavaScript has the origin of cs.org
− cs.org has “copy-pasted” JavaScript onto its webpage

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 11

SAME-ORIGIN POLICY EXCEPTIONS

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly
− Example scenario:

• cs.org embeds google.com
• The inner frame cannot interact with the outer frame
• The outer frame cannot interact with the inner one

− Exception II:
• Websites can fetch and display images/frames from other origins
• The website only knows about the image’s size and dimensions (restricted info.)
• The image and the frame has the origin of the page that it comes from (restricted)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 12

SAME-ORIGIN POLICY EXCEPTION (AND A WEAKNESS)

• Same-origin policy
− Two websites have the same origin if and only if
− The protocol, domain, and port of the URL all match exactly
− Example scenario:

• cs.org embeds google.com
• The inner frame cannot interact with the outer frame
• The outer frame cannot interact with the inner one

− Exception III:
• Websites can agree to allow some limited sharing
• Cross-origin resource sharing (CORS)
• ex. the postMessage function in JavaScript

− Receiving origin decides if to accept the message based on the origin
− The correctness is enforced by the browser

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 13

postMessage(“run”, script)

TOPICS FOR TODAY

• Advanced web security
− Same-origin policy

• Motivation
• Same-origin policy
• Weaknesses

− XSS (Cross-Site Scripting)
• Motivation
• XSS attacks
• Defenses (and potential weaknesses)

− CSRF (Cross-Site Request Forgery)
• Cookies
• Session
• CSRF attacks
• Defenses (and potential weaknesses)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 14

SECURITY RISKS ON THE INTERNET

• Risk II

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 15

1https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

REVISIT: JAVASCRIPT

• JavaScript
− A programming language for running code in the web browser
− Runs on the client-side

• The server sends code as part of the HTTP response
• The code runs in the browser, not in the web-server

− Used to manipulate web pages (HTML and CSS)
• Makes modern websites interactive
• JavaScript can be directly embedded in HTML with <script> tags

− Supported by all modern web browsers
• Most modern webpages involve JavaScript

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 16

REVISIT: JAVASCRIPT – CONT’D

• JavaScript example
− Create a pop-up message
− HTML: <script>alert(”Hello world!")</script>

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 17

Hello world!

Ok

If the browser loads the HTML,
it will run the embedded JavaScript
and create a pop-up window.

REVISIT: JAVASCRIPT – CONT’D

• JavaScript in Go
− Websites runs JavaScript with an (potentially malicious) input
− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to render the website with the given name

− You will receive the following response (and the browser renders it)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 18

func handleSayHello(w http.ResponseWriter, r *http.Request) {
name := r.URL.Query()["name"][0]
fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=Bob

<html><body>Hello Bob!</body></html>

REVISIT: JAVASCRIPT – CONT’D

• JavaScript in Go
− Websites runs JavaScript with an (potentially malicious) input
− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to include HTML tags

− You will receive the following response (and the browser renders it)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 19

func handleSayHello(w http.ResponseWriter, r *http.Request) {
name := r.URL.Query()["name"][0]
fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=Bob

<html><body>Hello Bob!</body></html>

REVISIT: JAVASCRIPT – CONT’D

• JavaScript exploitation
− Websites runs JavaScript with an (potentially malicious) input
− Your HTML includes the following script (and hosted on “cs370.com”)

− You can use this script to include HTML tags

− You will receive the following response (and the browser renders it)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 20

func handleSayHello(w http.ResponseWriter, r *http.Request) {
name := r.URL.Query()["name"][0]
fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)

}

https://cs370.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

1

Ok

XSS: CROSS-SITE SCRIPTING

• Cross-site scripting
− An adversary injects malicious JavaScript to a legitimate website

• The victim accesses the legitimate website
• The legitimate website sends the attacker’s JavaScript to the victim
• The victim’s browser will run the script with the origin of the legitimate website
• Now the attacker’s JavaScript can access information on the legitimate website

− It evades the same-origin policy
• The JavaScript will run with the same origin (as the legitimate website)

− Two representative XSS attacks
• Stored XSS
• Reflected XSS

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 21

XSS: CROSS-SITE SCRIPTING

• Stored XSS (Persist XSS)
− The attacker’s JavaScript is stored on the legitimate server
− Example: Facebook pages

• Anyone can load a Facebook page with content provided by users
• An adversary puts some JavaScript on their Facebook page
• Anyone who loads the attacker’s page will run JavaScript (with the origin of Facebook)

− Note: stored XSS requires the victim to load the page with injected JavaScript

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 22

XSS: CROSS-SITE SCRIPTING

• Stored XSS illustration
− The attacker’s JavaScript is stored on the legitimate server
− Note: stored XSS requires the victim to load the page with injected JavaScript

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 23

1. In
ject m

alicious sc
ripts

2. Request website contents

3. Receive contents with malicious scripts

4. The victim runs this script
5. Send malicious requests and receives resp.

6. Receives sensitive data

(e.g., session token)

XSS: CROSS-SITE SCRIPTING

• Reflected XSS
− The attacker has the victim input JavaScript into a request
− The content is reflected (copied) in the response from the server
− Example: Search

• The victim makes a request to http://google.com/search?q=Bob
• The response will be “XYZ results for Bob”
• The victim makes a request to http://google.com/search?q=<script>alert(1)</script>
• The response will be “XYZ results for <script>alert(1)</script>”

− Note: reflected XSS requires the victim to make a request with injected JavaScript

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 24

http://google.com/search?q=Bob
http://google.com/search?q=%3cscript%3ealert(1)%3c/script%3e

XSS: CROSS-SITE SCRIPTING

• Reflected XSS illustration
− The attacker has the victim input JavaScript into a request
− The content is reflected (copied) in the response from the server

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 25

1. Make the victim do malicious requests
(e.g., click the link in a spam)

2. Request URLs under the attack’s control

3. Reflect malicious scripts

4. The victim runs the malicious script
5. Send malicious requests and receives resp.

6. Receives sensitive data
(e.g., session token)

XSS: CROSS-SITE SCRIPTING

• Reflected XSS (Practicality)
− How do we make the victim to make such malicious requests?

• Make a malicious website that includes an embedded iframe which makes the request
− Make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
− <iframe height=1 width=1 src="http://google.com/search?q=<script>alert(1)</script>">

• Trick the victim into clicking the link
− Posting a link on social media
− Sending a text (Here is a new photo from your friend XYZ…)
− Sending a phishing email

• The link will load the attacker’s website and redirects to the reflected XSS link
• … (Good luck then) …

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 26

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML sanitization
− HTML escaping
− Content security policy (CSP)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 31

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML sanitization

• Remove the potentially-exploitable HTML code
− Example:

≫ <i> <u> are allowed
≫ <script> <object> <embed> <link> will be removed
≫ onClick attribute will be removed
≫ … many more

− Important:
≫ Need to escape all dangerous characters (lists of them can be found)
≫ Otherwise, we will still be vulnerable

• You should always rely on trusted libraries to do this for you

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 32

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML escaping

• Treat the request as data, not a script (not a HTML)
− Transform certain characters into some other format
− Example:

≫ Make it start with an ampersand (&) and end with a semicolon (;)
≫ Instead of <, use <
≫ Instead of ", use "
≫ Instead of , use
≫ … many more

− Important:
≫ Need to escape all dangerous characters (lists of them can be found)
≫ Otherwise, we will still be vulnerable

• You should always rely on trusted libraries to do this for you

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 33

<html>
<body>

Hello <script>alert(1)</script>!
</body>
</html>

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML escaping

− A malicious URL of the attack’s

− You will receive the following safer response

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 34

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>",html.EscapeString(name))
}

https://cs370.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

XSS: CROSS-SITE SCRIPTING

• Defenses
− HTML escaping – cont’d

• Tackles the challenge:
− Suppose a developer has to take an action for every request
− It’s unlikely to be manageable by the developer

• Smart ways
− Templating
− You declare in your HTML what data goes where
− The templating engine handles all the escaping internally
− The HTTP library encourages you to use templates

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 35

<html>
<body>

Hello {{.name}}!
</body>
</html>

XSS: CROSS-SITE SCRIPTING

• Defenses
− Content security policy (CSP)

• Instruct the browser to only use resources loaded from specific places
• Implement additional headers to specify such policy
• Standard approaches:

− Disallow all inline scripts, which prevents inline XSS
− Ex: Disallow <script>alert(1)</script>
− Only allow scripts from specified domains, which prevents XSS from linking to external scripts
− Ex: Disallow <script src="https://cs370.com/infostealer.js">

• Note:
− CSP is also compatible with other contents (e.g., iframes, images, etc.)
− Relies on the browser to enforce security, so more of a mitigation for defense-in-depth

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 36

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

TOPICS FOR TODAY

• Advanced web security
− Same-origin policy

• Motivation
• Same-origin policy
• Weaknesses

− XSS (Cross-Site Scripting)
• Motivation
• XSS attacks
• Defenses (and potential weaknesses)

− CSRF (Cross-Site Request Forgery)
• Cookies
• Session
• CSRF attacks
• Defenses (and potential weaknesses)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 37

MOTIVATION

• HTTP is state-“less”
− Illustrating example

• Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”
• Today, Bob visited “facebook.com” and found that the language is “English”
• Bob sets it to “Sanskrit”
• … (do this unlimited times)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 38

5.15.2023 Set my language to “Sanskrit”

5.16.2023 Set my language to “Sanskrit”

5.17.2023 Set my language to “Sanskrit”

… (5.17.2100 Set my language …)

MOTIVATION

• Solution: Cookies
− Illustrating example

• Yesterday, Bob visited “facebook.com” and set the language pref. to “Sanskrit”
• The server sends HTTP response with small blocks of data containing the language pref.
• The browser stores the data to its cookie jar
• Today, Bob visited “facebook.com” and see the “Sanskrit” version

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 39

5.15.2023 Set my language to “Sanskrit”

5.15.2023 HTTP response with cookies
5.16.2023 HTTP request

COOKIES

• Cookies
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)
• HTTP Header:

− Set-cookie: name = value;
− (It’s a name-value pair with some extra metadata)
− Example:

≫ HTTP/1.1 200 OK
≫ Content-Type: text/html
≫ Set-Cookie: items=16
≫ Set-Cookie: headercolor=blue
≫ Set-Cookie: footercolor=green
≫ Set-Cookie: screenmode=dark, Expires=Sun, 1 Jan 2023 12:00:00 GMT

• Let’s take a look (Chrome: view > developer > developer tools > application > Cookies)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 40

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)
• HTTP Header:

− Set-cookie: name = value;
− Domain = (when to send);
− Path = (when to send);

• The server automatically attaches the cookies in scope

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 41

Scope

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)
• HTTP Header:

− Set-cookie: name = value;
− Domain = (when to send);
− Path = (when to send);
− Secure = (only send over HTTPS);

• The server automatically attaches the cookies in scope
• The cookies can only be sent via secure communication (using TLS)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 42

COOKIES

• Cookie scope
− A small blocks of data

• The server sends cookies as a part of their HTTP response (no cookies at the first time)
• HTTP Header:

− Set-cookie: name = value;
− Domain = (when to send);
− Path = (when to send);
− Secure = (only send over HTTPS);
− Expires = (when expires)
− HttpOnly

• The server automatically attaches the cookies in scope
• The cookies can only be sent via secure communication (using TLS)
• The browser should delete the cookies after a certain expiration date
• HttpOnly: cookies cannot be accessed by JavaScript; only for HTTP requests

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 43

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies
− The browser sends the cookies based on the scope

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 44

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies

• Domain can be any domain-suffix of URL-hostname (not a TLD)
• Example:

− The server “login.cs370.com” sends cookies; can it
− set cookies in the browser for “cs370.com”?
− set cookies in the browser for “.cs370.com”?
− set cookies in the browser for “secret.cs370.com”?
− set cookies in the browser for “.com”?
− set cookies in the browser for “osu-cs370.com”?

• Path can be set to any path

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 45

COOKIES

• Cookie policy
− The server sets the scope (domain and path) on cookies
− The browser sends the cookies based on the scope

• Suppose the cookie we have is
− domain: “cs370.com”
− path : “/micro-labs”

• The browser can include the cookies in the request to:
− http://login.cs370.com/micro-labs/week1/sanity-check

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 46

COOKIES

• Example:
− Cookie 1:

• name = neuronoverflow
• value = ctf-admin
• domain = login.cs370.com
• path = /
• non-secure

− Which cookies will be sent?
• “http://checkout.cs370.com”
• “http://login.cs370.com”
• “http://osu-cs370.com”
• “https://login.cs370.com”

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 47

− Cookie 2:
• name = test
• value = ctf-player
• domain =.cs370.com
• path = /
• non-secure

COOKIES

• Cookies vs. same-origin policy
− SOP requires an exact match between domains
− Cookies do not always require an exact match; scope matters
− Example:

• Suppose we have a cookie:
− name = neuronoverflow
− value = ctf-admin
− domain = login.cs370.com
− path = /
− non-secure

• “http://users.cs370.com”
− JavaScript on this URL can access the cookie above…

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 48

COOKIES

• Bypass same-origin policy
− SOP requires an exact match between domains

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 49

m1234.facebook.com

login.facebook.com

1. The “facebook.com” sends cookies (e.g., session token)

login.facebook.com

2. 3. The victim access m1234… then sends the cookies

MOTIVATION

• Session authentication
− Motivating example

• Bob visited “oregonstate.com” and login with their username, password
• Bob, 5-min later, visit “oregonstate.edu”
• The website asks their usernamd and password
• Bob is very happy…

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 50

MOTIVATION

• Session authentication
− Motivating example

• Bob visited “oregonstate.com” and login with their username, password
• Bob, 5-min later, visit “oregonstate.edu”
• The website asks their usernamd and password
• Bob is very happy…

− Session token
• A secret value for associating requests with a legitimate user
• In the first visit to the website:

− Type the username and password
− The browser receives a session token (the server remembers this token)

• The subsequent visits to the website
− Include the session token in the requests
− The server checks if the token is valid and is not expired
− Then the server processes the request

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 51

SESSION TOKEN

• Session authentication
− Session token + cookies

• A secret value for associating requests with a legitimate user
• In the first visit to the website:

− Type the username and password
− The server sends cookies with a session token
− The browser receives a session token (the server remembers this token)

• The subsequent visits to the website
− Include the session token cookie in the requests
− The server checks if the token is valid and is not expired
− Then the server processes the request

• If one logs-out
− The browser and server delete the session token

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 52

SESSION TOKEN

• + cookies
− Security

• Suppose that the session token is stolen:
− The attacker can impersonate you in any request
− … You are friendly-up!

• To ensure the security
− The server needs to generate session tokens randomly and securely
− The browser requires to

≫ Check if malicious website cannot steal tokens (GSB)
≫ Make sure they do not send session tokens to malicious websites

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 53

https://safebrowsing.google.com/

TOPICS FOR TODAY

• Advanced web security
− Same-origin policy

• Motivation
• Same-origin policy
• Weaknesses

− XSS (Cross-Site Scripting)
• Motivation
• XSS attacks
• Defenses (and potential weaknesses)

− CSRF (Cross-Site Request Forgery)
• Cookies
• [Next lecture!] Session
• [Next lecture!] CSRF attacks
• [Next lecture!] Defenses (and potential weaknesses)

Secure AI Systems Lab (SAIL) :: CS370 - Introduction to Security 54

Thank You!

Secure AI Systems Lab

Tu/Th 4:00 – 5:50 PM

Sanghyun Hong
sanghyun.hong@oregonstate.edu

