CS 370: INTRODUCTION TO SECURITY
06.01: SOFTWARE SECURITY I

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

D
OregonState SA|L
&re UI‘llVGI'Slty Secure Al Systems Lab

TOPICS FOR TODAY

» Software security
- Memory safety vulnerabilities

* Format string vuln.
* Heap vuln.
* Off-by-one vuln.
- Practices to reduce software vulnerabilities

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

INTEGER OVERFLOW

KEV | g

Rank ID Name Score | Count vs.

(CVES)| 5021

1 CWE-787 ||Out-of-bounds Write 64.20 62 0

2 CWE-79 |(Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
3 CWE-89 |(Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A

4 CWE-20 |(Improper Input Validation 20.63 20 0
5 CWE-125 ||Out-of-bounds Read 17.67 1 -2 v
6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection')|| 17.53 32 -1 v

7 CWE-416 |[Use After Free 15.50 28 0

8 CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0

9 CWE-352 |[Cross-Site Request Forgery (CSRF) 11.53 1 0

10 CWE-434 |(Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A
12 CWE-507 _IDacerialization of Lintructad Data 668 Z el
13 CWE-190 |[Integer Overflow or Wraparound 6.53 2 -1V

mproper Authentication .
15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 (Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |[Missing Authentication for Critical Function 5.15 6 -7 Vv
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 2 Vv
20 CWE-276 |[Incorrect Default Permissions 4.84 0 -1 v
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') 3.57 6 +11 A
23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 ||[Improper Restriction of XML External Entity Reference 3.38 0 -1V
25 CWE-94 |(Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A
Oregon State https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 3

FORMAT STRING VULNERABILITIES

KEV | g

Rank ID Name Score | Count vs.

(CVES)| 5054
CWE-787 ||Out-of-bounds Write 64.20 62 0
mproper .
3 CWE-89 |(Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
6 8 [[Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection .

7 CWE-416 |[Use After Free 15.50 28 0

8 CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0

9 CWE-352 |[Cross-Site Request Forgery (CSRF) 11.53 1 0

10 CWE-434 |(Unrestricted Upload of File with Dangerous Type 9.56 6 0
11 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 ||Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 |[Integer Overflow or Wraparound 6.53 2 -1V

14 CWE-287 ||Improper Authentication 6.35 4 0
15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 (Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |[Missing Authentication for Critical Function 5.15 6 -7 Vv
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 2 Vv
20 CWE-276 |[Incorrect Default Permissions 4.84 0 -1 v
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') 3.57 6 +11 A
23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 ||[Improper Restriction of XML External Entity Reference 3.38 0 -1V
25 CWE-94 |(Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A

Oregon State https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Universi
ty Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 4

REVIEW: prINTF FUNCTION

void func (void) {
int secret = 42;
printf ("%d\n", 123);

. 2 RIP of func
printf assumes that there is 1 more

argument because there is one format
sequence and will look 4 bytes up the
stack for the argument

SFP of func
secret = 42

123 (arg to printf) argl

— &"%d\n" (arg to printf) arg0

RIP of printf

SFP of printf

[printf frame]

I '%' 'd' l\n' '\0'

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 5

REVIEW: prINTF FUNCTION

void func (void) {
int secret = 42;
printf ("%d\n", 123);

. 2 RIP of func
printf assumes that there is 1 more

argument because there is one format
sequence and will look 4 bytes up the
stack for the argument

SFP of func
secret = 42 argl
— &"%d\n" (arg to printf) arg0

RIP of printf

SFP of printf
Because the format string contains the

%d, it will still look 4 bytes up and print [printf frame]
the value of secret!

I '%' 'd' l\n' '\0'

Ao
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 6

FORMAT STRING VULNERABILITIES

char buf[64];

void vulnerable (void) {

char *secret string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

If we use printf ("%d%s").printf readsits
first argument (arg0), sees two format specifiers,

and expects two more arguments (argl and arg2).

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable

SFP of vulnerable

secret_string arg2
secret_number argl
&buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

"\O'
'S’ 'd’ ' 's'
'a' 'k’ 'e' "\0'
'p' 'a' 'n' __T:T__

FORMAT STRING VULNERABILITIES = CONT’'D

char buf[64];

void vulnerable (void) {
if (fgets(buf, 64, stdin) == NULL)
return;
printf (buf) ;

* The attacker can also write values using the %n specifier

- %n treats the next argument as a pointer and writes the # of bytes printed
so far to that address (usually used to calculate output spacing)

e printf("item %d:%n", 3, &val) stores7inval
 printf("item %d:%n", 987, &val) stores9inval

- print£("000%n") : writes the value 3 to the integer pointed to by address
located 8 bytes above the RIP of printsf

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

FORMAT STRING VULNERABILITIES — WALKTHROUGH

char buf[64];

void vulnerable (void) {
if (fgets(buf, 64, stdin) == NULL)
return;
printf (buf) ;

We're calling printf ("%d%n").printf
reads its first argument (arg0), sees two format
specifiers, and expects two more arguments
(argl and arg2).

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

L

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

"\O'
'S 'd’ ' 'n'
'a' 'k’ 'e' "\0'
'p' 'a' 'n' 'c!

arg2
argl

arg0

FORMAT STRING VULNERABILITIES — WALKTHROUGH

char buf[64];
RIP of vulnerable

void vulnerable (void) { SFP of vulnerable
if (fgets(buf, 64, stdin) == NULL) — secret_string arg2
return; secret_number argl

printf (buf) ; N sbuf [arg to printf] arg0

RIP of printf

SFP of printf
The first format specifier $d says to treat the next

argument (argl) as an integer and print it out.

[printf frame]

"\O'
—> '$! 'd’ ' 'n'
'a' 'k’ 'e' "\0'

—> 'p' 'a' 'n' 'c!

Oregon State
& University - :
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 10

FORMAT STRING VULNERABILITIES — WALKTHROUGH

char buf[64];
RIP of vulnerable

void wvulnerable (void) ({ SFP of vulnerable

if (fgets(buf, 64, stdin) == NULL) — secret_string arg2
return; secret_number argl
printf (buf) ’ — &buf [arg to printf] arg0

} RIP of printf

SFP of printf

The 2" format specifier $n says to treat the next
argument (arg2) as a pointer, and write the # of
bytes printed so far to the address at arg2.

[printf frame]

v\ov
We've printed 2 bytes so far, so the number 2 L »| s d g 'n’
gets written to secret_string. ‘a’ 'k e’ | "\O'

— | 0x02 0x00 0x00 0x00

Oregon State
& University - :
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 11

FORMAT STRING VULNERABILITIES — STACK DIAGRAM

void vulnerable (void) {
char buf[l6];
char str[1l2];
fgets (buf, 28, stdin);
printf (buf) ;

Now, let’s try some format string vulnerabilities
where the user-controlled buffer is on the stack
instead of in static memory.

What does the stack diagram look like?

o
Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

12

FORMAT STRING VULNERABILITIES — STACK DIAGRAM

void vulnerable (void) {
char buf[l6];
char str[1l2];
fgets (buf, 28, stdin);
printf (buf) ;

This is the stack diagram while printf£ is being
called. Where does printf look for arguments?

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable
SFP of vulnerable
buf
buf
buf
— buf
str
str

str

L &buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

13

FORMAT STRING VULNERABILITIES — STACK DIAGRAM

void vulnerable (void) {
char buf[l6];
char str[1l2];
fgets (buf, 28, stdin);
printf (buf) ;

The labels show which values in memory
printf will interpret as arguments.

If buf has 4 percent formatters, printf will
match the last percent formatter with arg4.

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable
SFP of vulnerable
buf
buf
buf
buf
str
str
str
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
argb
arg5
argd
arg3
arg2
argl

arg0

14

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

void vulnerable (void) {
char buf [16] : RIP of vulnerable
char str[12] ; SFP of vulnerable
fgets (buf, 28, stdin); buf arg7
printf (buf) ; buf arg6
} buf args
— buf arg4
Recall: If printf£ sees a $n, it takes the next str arg3
unused argument, treats it like an addr., and str arg2
writes the # of bytes printed so far to that addr. str argl
L sbuf [arg to printf] arg0
(1) Control where we write: the next unused RIP of printf
argument on the stack is 0xdeadbeef. SFP of printf
(2) Control what we write: the # of bytes printed e —
so far should be 100

o
Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

void vulnerable (void) {
char buf[l6];
char str[1l2];
fgets (buf, 28, stdin);
printf (buf) ;

(1) Control where we write: the next unused
argument on the stack is 0xdeadbeef.

(2) Control what we write: the # of bytes printed
so far should be 100.

Buf Oxdeadbeef @ %94c %c $c $n

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable
SFP of vulnerable
buf
buf
buf
buf
str
str
str
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
arg6
arg5
argd
arg3
arg2
argl
arg0

16

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

void vulnerable (void) {
char buf [16] : RIP of vulnerable
char str[l1l2]; SFP of vulnerable
fgets (buf, 28, stdin); %n
printf (buf) ; %csc
} $94c
—p Oxdeadbeef
If we write to memory, % formatters take up str
multiple bytes of memory, e.g., $94cis 4 str
characters and takes up 4 bytes of memory str
L &buf [arg to printf]
Buf Oxdeadbeef | %94c | %c %c %n RIP of printf

SFP of printf
#Char | 4 4 2 2 2

[printf frame]

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

arg7
arg6
arg5
argd
arg3
arg2
argl
arg0

17

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

Control where we write: the next unused arg. on
the stack should be 0xdeadbeef.
e Each % formatter “uses up” or “consumes”

RIP of vulnerable

SFP of vulnerable

%n arg7
one argument on the stack .
%Cc%
e We added $c arguments to “consume” or ese o
. . %94 5
“skip past” str, so the $n argument aligns ¢ e
. —> Oxdeadbeef argd
with arg4, where we put Oxdeadbeef
str arg3
str arg2
str argl
L—— &buf [arg to printf] arg0
Buf Oxdeadbeef | $94c $%c %c %n RIP of printf
SFP of printf
#Char | 4 4 2 2 2
[printf frame]
Args None argl | arg2 arg3 | arg4

Ao
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

Control what we write: the # of bytes printed so
far should be 100
e %94c prints the next argument on the stack
as a character, padded to 94 bytes (also
works if you switch 94 with other numbers)
e Oxdeadbeef and the %c formatters also
caused characters to be printed, so we
needed 100—4-1-1 = 94 padding bytes

Buf Oxdeadbeef | %$94c | %c %c %n

Char | 4 4 2 2 2
Args None argl arg2 | arg3 arg4
Print | 4 94 1 1 0

Ao
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable
SFP of vulnerable
sn
%csc
%$94c
— Oxdeadbeef
str
str

str

L &buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
arg6
arg5
argd
arg3
arg2
argl
arg0

19

FORMAT STRING VULNERABILITIES - WRITE 100 TO 0XDEADBEEF

Questions:
(1) How would you modify this exploit to write 89
bytes instead of 100 bytes?

Buf Oxdeadbeef | %$94c | %c %$c %$n

Char | 4 4 2 2 2
Args None argl | arg2 arg3 | arg4
Print | 4 94 1 1 0

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of wvulnerable
SFP of vulnerable
%n
%ckc
%$94c
— Oxdeadbeef
str
str

str

L &buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
arg6
arg5
argd
arg3
arg2
argl
arg0

20

FORMAT STRING VULNERABILITIES — DEFENSE

void vulnerable (void) {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;
printf (, buf) ;

Never use untrusted input in the 15t argument to
printf. Now the attacker cannot make the
number of arguments mismatched!

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

21

TOPICS FOR TODAY

» Software security

- Memory safety vulnerabilities

* Format string vuln.
* Heap vuln.
* Off-by-one vuln.
— Practices to reduce software vulnerabilities

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

22

HEAP VULNERABILITIES

KEV Rank
Rank ID Name Score | Count Ch::ge
(CVEs) 'lf";‘
1 CWE-787 ||Out-of-bounds Write 64.20 62 0
—
2 CWE-79 |[Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
3 CWE-89 |[Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A

9 CWE-352 |[Cross-Site Request Forgery (CSRF) 11.53 1 0

10 CWE-434 |(Unrestricted Upload of File with Dangerous Type 9.56 6 0

11 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A
12 CWE-502 ||Deserialization of Untrusted Data 6.68 7 +1 A
13 CWE-190 |[Integer Overflow or Wraparound 6.53 2 -1V
14 CWE-287 ||Improper Authentication 6.35 4 0

15 CWE-798 ||Use of Hard-coded Credentials 5.66 0 +1 A
16 CWE-862 (Missing Authorization 5.53 1 +2 A
17 CWE-77 |Improper Neutralization of Special Elements used in a Command (‘Command Injection') 5.42 5 +8 A
18 CWE-306 |[Missing Authentication for Critical Function 5.15 6 -7 Vv
19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 2 Vv
20 CWE-276 |[Incorrect Default Permissions 4.84 0 -1 v
21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') 3.57 6 +11 A
23 CWE-400 |Uncontrolled Resource Consumption 3.56 2 +4 A
24 CWE-611 ||[Improper Restriction of XML External Entity Reference 3.38 0 -1V
25 CWE-94 |(Improper Control of Generation of Code ('Code Injection') 3.32 4 +3 A

Oregon State https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Universi
ty Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 23

TARGETING INSTRUCTION POINTERS

* Reminder:
- You need to overwrite a pointer that will eventually be jumped to
— Stack smashing controls the RIP, but there are other targets too, e.g., function pointers

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

24

C++ VTABLES

e C++is an object-oriented language
- C++ objects can have instance variables and methods

— C++ has polymorphism: implementations of an interface can implement functions
differently, like Java

* To support this:
- Each class has a vtable (table of fn pointers), and each object points to its class’s vtable
— The vtable pointer is usually at the beginning of the object
— To run a fn: dereference the vtable pointer with an offset to find the function address

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

25

C++ VTABLES

instance variable of y

address of method bar

address of vtable of y

instance variable of x

instance variable of x

\ 4

address of method £foo

v

address of vtable of x

Heap

x is an object of type ClassX.
y is an object of type ClassY.

Oregon State
& University

v

ClassY vtable

address of method bar

address of method £foo

ClassX vtable

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

method bar of ClassY

method foo of ClassY

v

method bar of ClassX

method foo of ClassX

Code

26

C++ VTABLES

instance variable of y

address of method bar

\ 4

address of vtable of y

address of method £foo

instance variable of x

instance variable of x

v

address of vtable of x

Heap

ClassY vtable

address of method bar

address of method £foo

ClassX vtable

v

method bar of ClassY

method foo of ClassY

v

method bar of ClassX

method foo of ClassX

To call a method of y, first follow a
pointer on the heap to find the vtable...

... then follow a pointer in the vtable
to find the instructions of the method

Code

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

27

C++ VTABLES

instance variable of y

address of method bar

address of vtable of y

instance variable of x

instance variable of x

\ 4

address of method £foo

v

address of vtable of x

Heap

v

Suppose one of the instance vars.
of x is a buffer we can overflow

Oregon State
& University

ClassY vtable

address of method bar

address of method £foo

ClassX vtable

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

method bar of ClassY

method foo of ClassY

v

method bar of ClassX

method foo of ClassX

Code

28

C++ VTABLES

instance variable of y

address of vtable of y

instance variable of x

address of method bar

instance variable of x

address of vtable of x

\ 4

address of method £foo

v

Heap

v

ClassY vtable

address of method bar

address of method £foo

ClassX vtable

method bar of ClassY

method foo of ClassY

The attacker controls everything above the instance vars.
of x on the heap, including the vtable pointer for y

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

v

method bar of ClassX

method foo of ClassX

Code

29

C++ VTABLES

instance variable of y

— address of vtable of y

address of SHELL.CODE

SHELLCODE

instance variable of x

address of method bar

instance variable of x

address of vtable of x

\ 4

address of method £foo

Heap

v

ClassY vtable

address of method bar

address of method £foo

ClassX vtable

v

method bar of ClassY

method foo of ClassY

The vtable for y is now a pointer to shellcode. If method
foo for y is called, it will execute shellcode!

Gy Oregon State
¢ c50n.
o7 University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

v

method bar of ClassX

method foo of ClassX

Code

30

HEAP VULNERABILITIES

* Heap overflow
— Objects are allocated in the heap (using malloc in C or new in C++)
— A write to a buffer in the heap is not checked

— The attacker overflows the buffer and overwrites the vtable pointer of
the next object to point to a malicious vtable, with pointers to malicious code

— The next object’s function is called, accessing the vtable pointer

e Use-after-free
— An object is deallocated too early (using £ree in C or delete in C++)
- The attacker allocates memory, which returns the memory freed by the object

- The attacker overwrites a vtable pointer under the attacker’s control
to point to a malicious vtable, with pointers to malicious code

- The deallocated object’s function is called, accessing the vtable pointer

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

31

HEAP VULNERABILITIES: USE-AFTER-FREE

* Allocate memory in funcl()
— char *m = malloc(16), put Hello, world

* Free that block in func2(m)
- free(m)
* Allocate memory in func3()

— char *m2 = malloc(16), put Not hello, world

e Use min func4 (?!)

” Oregon State
& Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

char % funcl() {
char *m = malloc(16);
strncpy(m, "Hello world", 16);
return mj;

¥

void func2(char xm) {
free(m);
}

char x func3() {
char *m2 = malloc(16);
strncpy(m2, "Not Hello world", 16);

return m2;

¥

void func4(char xm) {
printf(" ", om);
}

int main() {
char *xm = funcl();
func2(m) ;
func3();
func4(m);

32

TOPICS FOR TODAY

» Software security

- Memory safety vulnerabilities

* Heap vuln.
* Off-by-one vuln.
- Practices to reduce software vulnerabilities

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

33

OFF-BY-ONE VULNERABILITY

Goal: execute shellcode located at 0xdeadbeef.

What parts of memory is an attacker able to
overwrite in this piece of code?

vulnerable:

EIP +—» call gets
add $4, %esp

mov %ebp, %esp
void vulnerable (void) { pop %ebp
char name[20]; ret
fread (name,21,1,stdin) ;
} main:
int main(void) { call vulnerable
vulnerable () ; mov %ebp, %esp
return 0; pop %ebp
} ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBR) xb££fed5h

ESPOxl££fedidd

RIP
SFP
RIP of

SFP of

of main
of main
vulnerable

vulnerable

name

name

name

name

name

34

OFF-BY-ONE VULNERABILITY = CONT'D

The attacker can overwrite all of name and the
least-significant byte of the SFP of vulnerable. If
the attacker can change where vulnerable
points, how to exploit this to execute shellcode?

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;
}

int main(void) {
vulnerable () ;
return 0;

EIP

vulnerable:

+—» call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBR xbf£f=d58 | \x60

RIP of main
SFP of main
RIP of wvulnerable
\x£ff \x£ff

name

\xbf

name

name

name

name

ESPOxl££fedidd

35

OFF-BY-ONE VULNERABILITY = CONT'D

Suppose we put 0x44. The SFP of vulnerable
points inside name, which the attacker controls.

What does the SFP usually point to? What will the
C program interpret the first bytes of name as?

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;
return 0;

EIP

vulnerable:

+—» call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBR xbf£fed5h | \x44

RIP of main
SFP of main

RIP of wvulnerable
\xff \x£f£f \xbf

name

name

name

name

name

A

ESPOxl££fedidd

36

OFF-BY-ONE VULNERABILITY = CONT'D

The C program now thinks that the SFP of main
and the RIP of main are inside name. The attacker
controls these values, so they can now overwrite
where the program thinks the RIP of main is.

void vulnerable (void) {
char name[20];

}

int main(void) {
vulnerable () ;
return 0;

fread (name,21,1,stdin) ;

EIP

vulnerable:

+—» call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBR) xb££fed5h

ESPOxl££fedidd

RIP of main
SFP of main
RIP of wvulnerable
\x44 \x£ff \x£ff \xbf

name

name

name

name [Fake RIP of main]

name [Fake RIP of main]

A

37

OFF-BY-ONE VULNERABILITY = CONT'D

Let’s see what happens

when the vulnerable function returns.

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;
return 0;

}

EIP

vulnerable:

call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of main
SFP of main

RIP of wvulnerable

EBRxE£££cd5H | \x44 \x£ff \x£ff \xbf

ESPOxl££fedidd

AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

A

38

OFF-BY-ONE VULNERABILITY = CONT'D

Returning from gets,

preparing to return from vulnerable.

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;

EIP

vulnerable:
call gets
add $4, %esp

1T—» mov %ebp, %esp

pop %ebp
ret

main:

call vulnerable
mov %ebp, %esp

return 0; pop %ebp
} ret
) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

EBR xbf£fed5h | \x44

ESPOxls££fedidd

RIP of main

SFP of main
RIP of vulnerable
\xb£f

\x£f£f \x£f£f

AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

A

39

OFF-BY-ONE VULNERABILITY = CONT'D

Epilogue step 1: Move ESP back up.

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;

EIP

vulnerable:

call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp

return 0; pop %ebp
} ret
Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of main
SFP of main

RIP of wvulnerable

EBP) xsssseatsh | \x44 \x£ff \x£ff \xbf

ESP

AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

A

40

OFF-BY-ONE VULNERABILITY = CONT'D

Epilogue step 1: Move ESP back up
Epilogue step 2: Restore EBP. Note that EBP now

points inside name, instead of at the SFP of main

RIP of main

vulnerable: SFP of main
T ESP xbfffed5e RIP of vulnerable
call gets
add $4, %esp \x44 \x£f£f \x£f£f \xbf
mov %ebp, %esp
void vulnerable (void) ({ pop %ebp AAAA
char name[20]; EIP +—» ret AAAA
fread (name,21,1,stdin) ;
} main: AAAA
. . . Tl Oxdeadbeef [Fake RIP m]
int main(void) { call vulnerable
vulnerable() ; mov %$ebp, $esp EBR xb££fedsp AAAA [Fake SFP m]
return 0; pop %ebp <
} ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

OFF-BY-ONE VULNERABILITY = CONT'D

Epilogue step 1: Move ESP back up

Epilogue step 2: Restore EBP. Note that EBP now
points inside name, instead of at the SFP of main
Epilogue step 3: Restore EIP. We never changed
the RIP of vulnerable, so it returns to main

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;
return 0;

EIP

vulnerable:
call gets
add $4, %esp
mov %ebp, %esp

pop %ebp
ret

main:

call vulnerable

T—» mov %ebp, %esp

pop %ebp
ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of main
ESPxbE££edch SFP of main
RIP of vulnerable
\x44 \x£f£f \x£f£f \xbf
AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

EBR)yocscacsy AAAA [Fake SFP m]

A

42

OFF-BY-ONE VULNERABILITY = CONT'D

Let’s see what happens when the main function
returns, now with the EBP in the wrong place

Epilogue step 1: Move ESP back up

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;
return 0;

EIP

vulnerable:
call gets
add $4, %esp
mov %ebp, %esp

pop %ebp
ret

main:

call vulnerable
mov %ebp, %esp

1—» pop %ebp

ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

RIP of main
SFP of main
RIP of wvulnerable

\x44 \x£f£f \x£f£f \xbf

AARA
AARA
AARA
ESP Oxdeadbeef [Fake RIP m]
EBR) xssfecip AAAA [Fake SFP m]

A

43

OFF-BY-ONE VULNERABILITY = CONT'D

EBP — »

Epilogue step 1: Move ESP back up
Epilogue step 2: Restore EBP; The program looks at
our fake SFP to restore EBP, and points EBP to

garbage AAAA

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;
}

int main(void) {
vulnerable () ;
return 0;

EIP

vulnerable:
call gets
add $4, %esp
mov %ebp, %esp

pop %ebp
ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

T—» ret

) Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ESPOxbEffed4d

RIP of main
SFP of main
RIP of wvulnerable
\x44 \x£f£f \x£f£f \xbf
AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

A

44

OFF-BY-ONE VULNERABILITY = CONT'D

EBP — »

Epilogue step 1: Move ESP back up

Epilogue step 2: Restore EBP

Epilogue step 3: Restore EIP. The program looks at
our fake RIP to restore EIP, and redirects execution
to Oxdeadbeef

vulnerable:
EP —> Y
= call gets
add $4, %esp

mov %ebp, %esp
void vulnerable (void) { pop %ebp
char name[20]; ret
fread (name,21,1,stdin) ;
} main:
int main(void) { call vulnerable
vulnerable () ; mov %ebp, %esp
return 0; pop %ebp
} ret

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

ESPOxbE£££ee4p

RIP of main
SFP of main
RIP of wvulnerable
\x44 \x£ff \x£ff \xbf

AAAA

AAAA

AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

A

45

TOPICS FOR TODAY

» Software security

- Memory safety vulnerabilities

* Off-by-one vuln.
- Practices to reduce software vulnerabilities

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

46

CAN WE AVOID VULNERABILITIES?

* |s it a solve-able problem?
— Suppose we have code A and want to tell if it has mistakes or not
- The code is unlimitedly large, and we have unlimited resources
- Can’t tell if the code has a vulnerability or not (Halting Problem)

* |s it pessimistic future?
- No
- Fortunately, code has a limited size, and we have limited resources

— Can reduce the number of mistakes in the code Alan Turing...
* Construct patterns of existing vulnerabilities and search those patterns (pattern matching)

* Run the program with various inputs and find any crashes/vulnerabilities (fuzzing)
* ... (many more)

Oregon State
& University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 47

REQUIRE VULNERABILITY DATABASE

 Common vulnerabilities and exposures
NVD

CVSS Scores
CPE Info

Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs
TOTAL CVE Records: 188916

NOTICE: Transition to the all-new CVE website at WWW.CVE.ORG is underway and will last up to one year. (details)

NOTICE: Changes coming to CVE Record Format JSON and CVE List Content Downloads in 2022.

— Maintained by NIST/MITRE
- Software vulnerability can inflict a huge impact
- We use this database to announce common vulnerabilities to the community

Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

48

REQUIRE VULNERABILITY DATABASE — CONT'D

* How does it work?
- Developers
* Find vulnerabilities in their software (e.g., NGINX v1.0.7 ~ 1.0.14 has a BOF)
* Fix them

* Announce the fixes to CVE
Vulnerability Details : CVE-2012-2089

Buffer overflow in ngx_http_mp4_module.c in the ngx_http_mp4_module module in nginx 1.0.7 through 1.0.14 and 1.1.3 through 1.1.18, when the mp4 directive is used, allows
remote attackers to cause a denial of service (memory overwrite) or possibly execute arbitrary code via a crafted MP4 file.

Publish Date : 2012-04-17 Last Update Date : 2021-11-10

- System operators
* Watch the CVE list and update vulnerable software

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

49

REQUIRE VULNERABILITY DATABASE — CONT'D

* How does it work?
- White hat hackers
* Analyze software using testing methods
* Fuzzing, symbolic execution, manual testing, code auditing, reverse engineering, etc

* Find a bug
* Exploit the bug
- Vendors

* Run bug bounty programs
* Vendor reports the vulnerabilities white-hat hackers found to NIST/MITRE CVE
¢ syslog
Available for: iPhone 4s and later, iPod touch (5th generation) and later, iPad 2 and later
Impact: A local user may be able to change permissions on arbitrary files

Description: syslogd followed symbolic links while changing permissions on files. This issue was
addressed through improved handling of symbolic links.

CVE-ID

CVE-2014-4372 : Tielei Wang and YeongJin Jang of Georgia Tech Information Security Center (GTISC)

g Oregon State
3‘5‘ Universi
ty

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 50

USERS NEED TO PATCH SOFTWARE IMMEDIATELY

* Facts

- Vulnerabilities are reported every day

— We cannot fix all the vulnerabilities at once (it requires testing, testing, testing...)

* Recommendations

— Do not miss the updates
— Developers set patch schedules

* MS Windows regularly issues a patch on 2" Tue.
- Missing them gives opportunities to hackers..

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

Windows Update

Restart required
You scheduled your device to restart at 3:00 PM on 11/22/18

2018-11 Security Update for Adobe Flash Player for Windows 10 Versid
Systems (KB4467694)
Status: Pending restart

2018-11 Cumulative Update for Windows 10 Version 1803 for x64-base
Status: Pending restart

Restart now Schedule the restart

~

Change active hours
View update history

Advanced options

51

HELP DEVELDPERS REDUCE MISTAKES

* Unit tests
— Create test-cases and run before committing your code

* Do code review
— Put a non-stressful human here
- They will read code in a different perspective

T®
Oregon State
& University N : ;

: Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security 52

TOPICS FOR TODAY

» Software security

- Motivation

- Memory safety vulnerabilities
* Buffer overflow vuln.
* Integer overflow vuln.
* Format string vuln.
* Heap vuln.
* Off-by-one vuln.

— Practices to reduce software vulnerabilities

T®
Oregon State
& University - -
Secure Al Systems Lab (SAIL) :: CS370 - Introduction to Security

53

Thank You!

Tu/Th 4:00 — 5:50 PM
Sanghyun Hong

sanghyun.hongl@oregonstate.edu

e
OregonState SA|L
e UI‘llVEI'Slty Secure Al Systems Lab

